- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 离散型随机变量及其分布列
- + 二项分布及其应用
- 条件概率
- 事件的独立性
- 独立重复试验
- 二项分布
- 离散型随机变量的均值与方差
- 正态分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
2018年6月18日,是我国的传统节日“端午节”.这天,小明的妈妈煮了5个粽子,其中两个腊肉馅,三个豆沙馅.小明随机抽取出两个粽子,若已知小明取到的两个粽子为同一种馅,则这两个粽子都为腊肉馅的概率为( )
A.![]() | B.![]() | C.![]() | D.![]() |
一袋中装有6个黑球,4个白球.如果不放回地依次取出2个球.求:
(1)第1次取到黑球的概率;
(2)第1次和第2次都取到黑球的概率;
(3)在第1次取到黑球的条件下,第2次又取到黑球的概率.
(1)第1次取到黑球的概率;
(2)第1次和第2次都取到黑球的概率;
(3)在第1次取到黑球的条件下,第2次又取到黑球的概率.
某大学城校区与本部校区之间的驾车单程所需时间为
,
只与道路畅通状况有关,对其容量为500的样本进行统计,结果如下:
以这500次驾车单程所需时间的频率代替某人1次驾车单程所需时间的概率.
(1)求
的分布列与
;
(2)某天有3位教师独自驾车从大学城校区返回本部校区,记
表示这3位教师中驾车所用时间少于
的人数,求
的分布列与
;
(3)下周某天张老师将驾车从大学城校区出发,前往本部校区做一个50分钟的讲座,结束后立即返回大学城校区,求张老师从离开大学城校区到返回大学城校区共用时间不超过120分钟的概率.


![]() | 25 | 30 | 35 | 40 |
频数(次) | 100 | 150 | 200 | 50 |
以这500次驾车单程所需时间的频率代替某人1次驾车单程所需时间的概率.
(1)求


(2)某天有3位教师独自驾车从大学城校区返回本部校区,记




(3)下周某天张老师将驾车从大学城校区出发,前往本部校区做一个50分钟的讲座,结束后立即返回大学城校区,求张老师从离开大学城校区到返回大学城校区共用时间不超过120分钟的概率.
某群体中的每位成员使用移动支付的概率都为
,各成员的支付方式相互独立,设
为该群体的10位成员中使用移动支付的人数,此时
若
则
_______.






甲、乙两支球队进行总决赛,比赛采用五场三胜制,即若有一队先胜三场,则此队为总冠军,比赛就此结束.因两队实力相当,每场比赛两队获胜的可能性均为二分之一.据以往资料统计,第一场比赛可获得门票收入40万元,以后每场比赛门票收入比上一场增加10万元.
(1)求总决赛中获得门票总收入恰好为150万元且甲获得总冠军的概率;
(2)设总决赛中获得的门票总收入为
,求
的分布列和数学期望
.
(1)求总决赛中获得门票总收入恰好为150万元且甲获得总冠军的概率;
(2)设总决赛中获得的门票总收入为



在射击训练中,某战士射击了两次,设命题
是“第一次射击击中目标”, 命题
是“第二次射击击中目标”,则命题“两次射击中至少有一次没有击中目标”可表示为( )


A.![]() | B.![]() | C.![]() | D.![]() |