- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 离散型随机变量及其分布列
- + 二项分布及其应用
- 条件概率
- 事件的独立性
- 独立重复试验
- 二项分布
- 离散型随机变量的均值与方差
- 正态分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
甲、乙、丙三人分别独立的进行某项技能测试,已知甲能通过测试的概率是
,甲、乙、丙三人都能通过测试的概率是
,甲、乙、丙三人都不能通过测试的概率是
,且乙通过测试的概率比丙大.
(Ⅰ)求乙、丙两人各自通过测试的概率分别是多少;
(Ⅱ)求测试结束后通过的人数
的数学期望
.



(Ⅰ)求乙、丙两人各自通过测试的概率分别是多少;
(Ⅱ)求测试结束后通过的人数


某大学举办“我爱记歌词”校园歌手大赛,经过层层选拔,有5人进入决赛,决赛办法如下:选手参加“千首电脑选歌”演唱测试,测试过关者即被授予“校园歌手”称号,否则参加“百首电脑选歌”演唱测试.若“百首电脑选歌”测试过关也被授予“校园歌手”称号,否则被彻底淘汰.若进入决赛的5人“千首电脑选歌”演唱测试过关的概率是0.5,“百首电脑选歌”演唱测试合格的概率是0.8,而且每个人每轮测试是否合格是相互独立的,试计算(结果精确到0.01)
(1)恰好有两人参加“百首电脑选歌”演唱的概率;
(2)平均有几人参加“百首电脑选歌”演唱(保留小数);
(3)至少一人被最终淘汰的概率.
(1)恰好有两人参加“百首电脑选歌”演唱的概率;
(2)平均有几人参加“百首电脑选歌”演唱(保留小数);
(3)至少一人被最终淘汰的概率.
如图,一个圆形游戏转盘被分成6个均匀的扇形区域.用力旋转转盘,转盘停止转动时,箭头A所指区域的数字就是每次游戏所得的分数(箭头指向两个区域的边界时重新转动),且箭头A指向每个区域的可能性都是相等的.在一次家庭抽奖的活动中,要求每个家庭派一位儿童和一位成人先后分别转动一次游戏转盘,得分情况记为(a,b)(假设儿童和成人的得分互不影响,且每个家庭只能参加一次活动).
(Ⅰ)求某个家庭得分为(5,3)的概率;
(Ⅱ)若游戏规定:一个家庭的得分为参与游戏的两人得分之和,且得分大于等于8的家庭可以获得一份奖品.求某个家庭获奖的概率;
(Ⅲ)若共有5个家庭参加家庭抽奖活动.在(Ⅱ)的条件下,记获奖的家庭数为X,求X的分布列及数学期望.
(Ⅰ)求某个家庭得分为(5,3)的概率;
(Ⅱ)若游戏规定:一个家庭的得分为参与游戏的两人得分之和,且得分大于等于8的家庭可以获得一份奖品.求某个家庭获奖的概率;
(Ⅲ)若共有5个家庭参加家庭抽奖活动.在(Ⅱ)的条件下,记获奖的家庭数为X,求X的分布列及数学期望.

已知箱子里装有3个白球、3个黑球,这些球除颜色外完全相同,每次游戏从箱子里取出2个球,若这两个球的颜色相同,则获奖.(每次游戏结束后将球放回原箱)
(Ⅰ)求在1次游戏中获奖的概率;
(Ⅱ)求在3次游戏中获奖次数
的分布列及数学期望
(Ⅰ)求在1次游戏中获奖的概率;
(Ⅱ)求在3次游戏中获奖次数


为备战2012年伦敦奥运会,爾家篮球队分轮次迸行分项冬训.训练分为甲、乙两组,根据经验,在冬训期间甲、乙两组完成各项训练任务的概率分别为
和P(P>0)假设每轮训练中两组都各有两项训练任务需完成,并且每项任务的完成与否互不影响.若在一轮冬训中,两组完成训练任务的项数相等且都不小于一项,则称甲、乙两组为“友好组”
(I)若P=
求甲、乙两组在完成一轮冬训中成为“友好组”的概率;
(II)设在6轮冬训中,甲、乙两组成为“友好组”的次数为
,当
时,求P的取值范围.

(I)若P=

(II)设在6轮冬训中,甲、乙两组成为“友好组”的次数为


2011年3月20日,第19个世界水日,主题是:“城市水资源管理”;2011年“六·五”世界环境日中国主题:“共建生态文明,共享绿色未来”.活动组织者为调查市民对活动主题的了解情况,随机对10~60岁的人群抽查了
人,调查的每个人都同时回答了两个问题,统计结果如下:

(Ⅰ)若以表中的频率近似看作各年龄段回答活动主题正确的概率,规定回答正确世界环境日中国主题的得20元奖励,回答正确世界水日主题的得30元奖励.组织者随机请一个家庭中的两名成员(大人42岁,孩子16岁)回答这两个主题,两个主题能否回答正确均无影响,分别写出这个家庭两个成员获得奖励的分布列并求该家庭获得奖励的期望;
(Ⅱ)求该家庭获得奖励为50元的概率.


(Ⅰ)若以表中的频率近似看作各年龄段回答活动主题正确的概率,规定回答正确世界环境日中国主题的得20元奖励,回答正确世界水日主题的得30元奖励.组织者随机请一个家庭中的两名成员(大人42岁,孩子16岁)回答这两个主题,两个主题能否回答正确均无影响,分别写出这个家庭两个成员获得奖励的分布列并求该家庭获得奖励的期望;
(Ⅱ)求该家庭获得奖励为50元的概率.
在某校举办的元旦有奖知识问答中,甲、乙、丙三人同时回答一道有关环保知识的问题,已知甲回答对这道题的概率是
,甲、丙两人都回答错的概率是
,乙、丙两人都回答对的概率是
.
(Ⅰ)求乙、丙两人各自回答对这道题的概率.
(Ⅱ)求甲、乙、丙三人同时回答这道题时至少一人答错该题的概率.



(Ⅰ)求乙、丙两人各自回答对这道题的概率.
(Ⅱ)求甲、乙、丙三人同时回答这道题时至少一人答错该题的概率.
在某校举办的元旦有奖知识问答中,甲、乙、丙三人同时回答一道有关环保知识的问题,已知甲回答对这道题的概率是
,甲、丙两人都回答错的概率是
,乙、丙两人都回答对的概率是
.
(Ⅰ)求乙、丙两人各自回答对这道题的概率;
(Ⅱ)用
表示回答对该题的人数,求
的分布列和数学期望
.



(Ⅰ)求乙、丙两人各自回答对这道题的概率;
(Ⅱ)用



一个口袋中有大小相同的
个白球和
个黑球,每次从袋中随机地摸出
个球,并换入
只相同大小的黑球,这样继续下去,求:
(1)摸
次摸出的都是白球的概率;
(2)第
次摸出的是白球的概率.




(1)摸

(2)第
