- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 离散型随机变量及其分布列
- + 二项分布及其应用
- 条件概率
- 事件的独立性
- 独立重复试验
- 二项分布
- 离散型随机变量的均值与方差
- 正态分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在一次全国高中五省大联考中,有
万名学生参加,考后对所有学生成绩统计发现,英语成绩服从正态分布
.用茎叶图列举了
名学生的英语成绩,巧合的是这
个数据的平均数和方差恰好比所有
万个数据的平均数和方差都多
,且这
个数据的方差为
.

(1)求
;
(2)给出正态分布的数据:

①若从这
万名学生中随机抽取
名,求该生英语成绩在
的概率;
②若从这
万名学生中随机抽取
万名,记
为这
万名学生中英语成绩在
的人数,求
的数学期望.









(1)求

(2)给出正态分布的数据:


①若从这



②若从这






老师提出的一个关于引力波的问题需要甲、乙两位同学回答,已知甲、乙两位同学能正确回答该问题的概率分别为0.4与0.5,在这个问题已被解答的条件下,甲乙两位同学都能正确回答该问题的概率为()
A.![]() | B.![]() | C.![]() | D.![]() |
学校重视高三学生对数学选修课程的学习,在选修系列4中开设了
共5个专题课程,要求每个学生必须且只能选修1门课程,设
、
、
、
是高三十二班的4名学生.
(Ⅰ)求恰有2个专题没有被这4名学生选择的概率;
(Ⅱ)设这4名学生中选择
专题的人数为
.求
的分布列及数学期望
.





(Ⅰ)求恰有2个专题没有被这4名学生选择的概率;
(Ⅱ)设这4名学生中选择




已知篮球比赛中,得分规则如下:3分线外侧投入可得3分,踩线及3分线内侧投入可得2分,不进得0分;经过多次试验,某生投篮100次,有20个是3分线外侧投入,30个是踩线及3分线内侧投入,其余不能入篮,且每次投篮为相互独立事件.
(1)求该生在4次投篮中恰有三次是3分线外侧投入的概率;
(2)求该生两次投篮后得分
的分布列及数学期望.
(1)求该生在4次投篮中恰有三次是3分线外侧投入的概率;
(2)求该生两次投篮后得分

已知
、
两个盒子中都放有
个大小相同的小球, 其中
盒子中放有
个红球,
个黑球,
盒子中放有
个红球,
个黑球.
(1)若甲从
盒子中任取一球、乙从
盒子中任取一球, 求甲、乙两人所取球的颜色不同的概率;
(2)若甲每次从
盒子中任取两球, 记下颜色后放回, 抽取两次;乙每次从
盒子中任取两球, 记下颜色后放回, 抽取两次, 在四次取球的结果中, 记两球颜色相同的次数为
,求
的分布列和数学期望.









(1)若甲从


(2)若甲每次从




近几年来,我国许多地区经常出现雾霾天气,某学校为了学生的健康,对课间操活动做了如下规定:课间操时间若有雾霾则停止组织集体活动,若无雾霾则组织集体活动,预报得知,这一地区在未来一周从周一到周五5天的课间操时间出现雾霾的概率是:前3天均为50%,后2天均为80%,且每一天出现雾霾与否是相互独立的.
(1)求未来一周5天至少一天停止组织集体活动的概率;
(2)求未来一周5天不需要停止组织集体活动的天数
的分布列;
(3)用
表示该校未来一周5天停止组织集体活动的天数,记“函数
在区间
上有
且只有一个零点”为事件
,求事件
发生的概率.
(1)求未来一周5天至少一天停止组织集体活动的概率;
(2)求未来一周5天不需要停止组织集体活动的天数

(3)用



且只有一个零点”为事件


一次测验共有4个选择题和2个填空题,每答对一个选择题得20分,每答对一个填空题得10分,答错或不答得0分,若某同学答对每个选择题的概率均为
,答对每个填空题的概率均为
,且每个题答对与否互不影响.
(1)求该同学得80分的概率;
(2)若该同学已经答对了3个选择题和1个填空题,记他这次测验的得分为
,求
的分布列和数学期望.


(1)求该同学得80分的概率;
(2)若该同学已经答对了3个选择题和1个填空题,记他这次测验的得分为

