- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 离散型随机变量及其分布列
- + 二项分布及其应用
- 条件概率
- 事件的独立性
- 独立重复试验
- 二项分布
- 离散型随机变量的均值与方差
- 正态分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某校组织《最强大脑》
赛,最终
、
两队讲入决赛,两队各由3名选手组成,每局两队各派一名洗手
,除第三局胜者得2分外,其余各局胜者均得1分,每局的负者得0分.假设每局比赛
队选手获胜的概率均为
,且各局比赛结果相互独立,比赛结束时
队的得分高于
队的得分的概率为()








A.![]() | B.![]() | C.![]() | D.![]() |
甲、乙两人进行羽毛球比赛,假设每局比赛甲胜的概率是
,各局比赛是相互独立的,采用5局3胜制,那么乙以
战胜甲的概率为( )


A.![]() | B.![]() | C.![]() | D.![]() |
甲、乙两名运动员进行乒乓球单打比赛,根据以往比赛的胜负情况知道,每一局甲胜的概率为
,乙胜的概率为
.如果比赛采用“五局三胜”制,求甲以
获胜的概率
______




某学校成立了
、
、
三个课外学习小组,每位学生只能申请进入其中一个学习小组学习.申请其中任意一个学习小组是等可能的,则该校的任意4位学生中,恰有2人申请A学习小组的概率是( )



A.![]() | B.![]() | C.![]() | D.![]() |
乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用
局
胜制(即先胜
局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同.
(1)求甲以
比
获胜的概率;
(2)求乙获胜且比赛局数多于
局的概率;
(3)求比赛局数
的分布列,并求
.



(1)求甲以


(2)求乙获胜且比赛局数多于

(3)求比赛局数


某射手射击1次,击中目标的概率是0.9,他连续射击4次,且各次射击是否击中目标相互之间没有影响,有下列结论:
①他第3次击中目标的概率是0.9;
②他恰好击中目标3次的概率是
;
③他至少击中目标1次的概率是
;
④他至多击中目标1次的概率是
其中正确结论的序号是( )
①他第3次击中目标的概率是0.9;
②他恰好击中目标3次的概率是

③他至少击中目标1次的概率是

④他至多击中目标1次的概率是

其中正确结论的序号是( )
A.①②③ | B.①③ |
C.①④ | D.①② |
某中学为了丰富学生的业余生活,开展了一系列文体活动,其中一项是同学们最感兴趣的
对
篮球对抗赛,现有甲乙两队进行比赛,甲队每场获胜的概率为
.且各场比赛互不影响.
若采用三局两胜制进行比赛,求甲队获胜的概率;
若采用五局三胜制进行比赛,求乙队在第四场比赛后即获得胜利的概率.





一盒子中有8个大小完全相同的小球,其中3个红球,2个白球,3个黑球.
(Ⅰ)若不放回地从盒中连续取两次球,每次取一个,求在第一次取到红球的条件下,第二次也取到红球的概率;
(Ⅱ)若从盒中任取3个球,求取出的3个球中红球个数X的分布列和数学期望.
(Ⅰ)若不放回地从盒中连续取两次球,每次取一个,求在第一次取到红球的条件下,第二次也取到红球的概率;
(Ⅱ)若从盒中任取3个球,求取出的3个球中红球个数X的分布列和数学期望.