- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 写出简单离散型随机变量分布列
- 利用随机变量分布列的性质解题
- 由随机变量的分布列求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
假定某射手射击一次命中目标的概率为
.现有4发子弹,该射手一旦射中目标,就停止射击,否则就一直独立地射击到子弹用完.设耗用子弹数为X,求:

(1)X的概率分布;
(2)数学期望E(X).
(理科学生做)某一智力游戏玩一次所得的积分是一个随机变量
,其概率分布如下表,数学期望
.
(1)求a和b的值;
(2)某同学连续玩三次该智力游戏,记积分X大于0的次数为Y,求Y的概率分布与数学期望.


(1)求a和b的值;
(2)某同学连续玩三次该智力游戏,记积分X大于0的次数为Y,求Y的概率分布与数学期望.
X | 0 | 3 | 6 |
P | ![]() | a | b |
某射击运动员每次击中目标的概率是
,在某次训练中,他只有4发子弹,并向某一目标射击.
(1)若4发子弹全打光,求他击中目标次数
的数学期望;
(2)若他击中目标或子弹打光就停止射击,求消耗的子弹数
的分布列.

(1)若4发子弹全打光,求他击中目标次数

(2)若他击中目标或子弹打光就停止射击,求消耗的子弹数

某公司年会举行抽奖活动,每位员工均有一次抽奖机会.活动规则如下:一只盒子里装有大小相同的6个小球,其中3个白球,2个红球,1个黑球,抽奖时从中一次摸出3个小球,若所得的小球同色,则获得一等奖,奖金为300元;若所得的小球颜色互不相同,则获得二等奖,奖金为200元;若所得的小球恰有2个同色,则获得三等奖,奖金为100元.
(1)求小张在这次活动中获得的奖金数
的概率分布及数学期望;
(2)若每个人获奖与否互不影响,求该公司某部门3个人中至少有2个人获二等奖的概率.
(1)求小张在这次活动中获得的奖金数

(2)若每个人获奖与否互不影响,求该公司某部门3个人中至少有2个人获二等奖的概率.
某商场为了解该商场某商品近5年日销售量(单位:件),随机抽取近5年50天的销售量,统计结果如下:
若将上表中频率视为概率,且每天的销售量相互独立.则在这5年中:
(1)求5天中恰好有3天销售量为150件的概率(用分式表示);
(2)已知每件该商品的利润为20元,用X表示该商品某两天销售的利润和(单位: 元),求X的分布列和数学期望.
日销售量 | 100 | 150 |
天数 | 30 | 20 |
频率 | ![]() | ![]() |
若将上表中频率视为概率,且每天的销售量相互独立.则在这5年中:
(1)求5天中恰好有3天销售量为150件的概率(用分式表示);
(2)已知每件该商品的利润为20元,用X表示该商品某两天销售的利润和(单位: 元),求X的分布列和数学期望.
某园林基地培育了一种新观赏植物,经过了一年的生长发育,技术人员从中抽取了部分植株的高度(单位:厘米)作为样本(样本容量为
)进行统计,按
分组做出频率分布直方图,并作出样本高度的茎叶图(图中仅列出了高度在
的数据).

(1)求样本容量
和频率分布直方图中的
(2)在选取的样本中,从高度在80厘米以上(含80厘米)的植株中随机抽取3株,设随机变量
表示所抽取的3株高度在
内的株数,求随机变量
的分布列及数学期望.





(1)求样本容量


(2)在选取的样本中,从高度在80厘米以上(含80厘米)的植株中随机抽取3株,设随机变量



某市要对该市六年级学生进行体育素质调查测试,现让学生从“跳绳、短跑
米、长跑
米、仰卧起坐、游泳
米、立定跳远”
项中选择
项进行测试,其中“短跑、长跑、仰卧起坐”
项中至少选择其中
项进行测试.现从该市六年级学生中随机抽取了
名学生进行调查,他们选择的项目中包含“短跑、长跑、仰卧起坐”的项目个数及人数统计如下表:(其中
)
已知从所调查的
名学生中任选
名,他们选择“短跑、长跑、仰卧起坐”的项目个数不相等概率为
,记
为这
名学生选择“短跑、长跑、仰卧起坐”的项目个数之和.
(1)求
的值;
(2)求随机变量
的分布列和数学期望.









选择的项目中包含“短跑、长跑、仰卧起坐”的项目个数 | ![]() | ![]() | ![]() |
人数 | ![]() | ![]() | ![]() |
已知从所调查的





(1)求

(2)求随机变量

甲、乙等五名志愿者被随机地分到A,B,C,D四个不同的岗位服务,每个岗位至少有一名志愿者,设随机变量
为这五名志愿者中参加A岗位服务的人数,则
的期望值为________

