- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机变量
- 离散型随机变量
- + 离散型随机变量的分布列
- 写出简单离散型随机变量分布列
- 利用随机变量分布列的性质解题
- 由随机变量的分布列求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
甲乙二人进行定点投篮比赛,已知甲、乙两人每次投进的概率均为
,两人各投一次称为一轮投篮.
求乙在前3次投篮中,恰好投进2个球的概率;
设前3轮投篮中,甲与乙进球个数差的绝对值为随机变量
,求
的分布列与期望.





某老师是省级课题组的成员,主要研究课堂教学目标达成度,为方便研究,从实验班中随机抽取30次的随堂测试成绩进行数据分析
已知学生甲的30次随堂测试成绩如下
满分为100分
:

把学生甲的成绩按
,
,
,
,
,
分成6组,列出频率分布表,并画出频率分布直方图;
规定随堂测试成绩80分以上
含80分
为优秀,为帮助学生甲提高成绩,选取学生乙,对甲与乙的随堂测试成绩进行对比分析,甲与乙测试成绩是否为优秀相互独立
已知甲成绩优秀的概率为
以频率估计概率
,乙成绩优秀的概率为
,若
,则此二人适合为学习上互帮互助的“对子”
在一次随堂测试中,记
为两人中获得优秀的人数,已知
,问二人是否适合结为“对子”?






















为了增强高考与高中学习的关联度,考生总成绩由统一高考的语文、数学、外语3个科目成绩和高中学业水平考试3个科目成绩组成.保持统一高考的语文、数学、外语科目不变,分值不变,不分文理科,外语科目提供两次考试机会.计入总成绩的高中学业水平考试科目,由考生根据报考高校要求和自身特长,在思想政治、历史、地理、物理、化学、生物、信息技术七科目中自主选择三科.
(1)某高校某专业要求选考科目物理,考生若要报考该校该专业,则有多少种选考科目的选择;
(2)甲、乙、丙三名同学都选择了物理、化学、历史组合,各学科成绩达到二级的概率都是0.8,且三人约定如果达到二级不参加第二次考试,达不到二级参加第二次考试,如果设甲、乙、丙参加第二次考试的总次数为
,求
的分布列和数学期望.
(1)某高校某专业要求选考科目物理,考生若要报考该校该专业,则有多少种选考科目的选择;
(2)甲、乙、丙三名同学都选择了物理、化学、历史组合,各学科成绩达到二级的概率都是0.8,且三人约定如果达到二级不参加第二次考试,达不到二级参加第二次考试,如果设甲、乙、丙参加第二次考试的总次数为


2019年春节期间,某超市准备举办一次有奖促销活动,若顾客一次消费达到400元则可参加一次抽奖活动,超市设计了两种抽奖方案.
方案一:一个不透明的盒子中装有30个质地均匀且大小相同的小球,其中10个红球,20个白球,搅拌均匀后,顾客从中随机抽取一个球,若抽到红球则顾客获得60元的返金券,若抽到白球则获得20元的返金券,且顾客有放回地抽取3次.
方案二:一个不透明的盒子中装有30个质地均匀且大小相同的小球,其中10个红球,20个白球,搅拌均匀后,顾客从中随机抽取一个球,若抽到红球则顾客获得80元的返金券,若抽到白球则未中奖,且顾客有放回地抽取3次.
(1)现有两位顾客均获得抽奖机会,且都按方案一抽奖,试求这两位顾客均获得180元返金券的概率;
(2)若某顾客获得抽奖机会.
①试分别计算他选择两种抽奖方案最终获得返金券的数学期望;
②为了吸引顾客消费,让顾客获得更多金额的返金券,该超市应选择哪一种抽奖方案进行促销活动?
方案一:一个不透明的盒子中装有30个质地均匀且大小相同的小球,其中10个红球,20个白球,搅拌均匀后,顾客从中随机抽取一个球,若抽到红球则顾客获得60元的返金券,若抽到白球则获得20元的返金券,且顾客有放回地抽取3次.
方案二:一个不透明的盒子中装有30个质地均匀且大小相同的小球,其中10个红球,20个白球,搅拌均匀后,顾客从中随机抽取一个球,若抽到红球则顾客获得80元的返金券,若抽到白球则未中奖,且顾客有放回地抽取3次.
(1)现有两位顾客均获得抽奖机会,且都按方案一抽奖,试求这两位顾客均获得180元返金券的概率;
(2)若某顾客获得抽奖机会.
①试分别计算他选择两种抽奖方案最终获得返金券的数学期望;
②为了吸引顾客消费,让顾客获得更多金额的返金券,该超市应选择哪一种抽奖方案进行促销活动?
已知
,
,
,…,
等10所高校举行自主招生考试,某同学参加每所高校的考试获得通过的概率均为
.
(1)如果该同学10所高校的考试都参加,恰有
所通过的概率为
,当
为何值时,
取得最大值;
(2)若
,该同学参加每所高校考试所需的费用均为
元,该同学决定按
,
,
,…,
顺序参加考试,一旦通过某所高校的考试,就不再参加其它高校的考试,否则,继续参加其它高校的考试,求该同学参加考试所需费用
的分布列及数学期望.





(1)如果该同学10所高校的考试都参加,恰有




(2)若







某区选派7名队员代表本区参加全市青少年围棋锦标赛,其中3名来自A学校且1名为女棋手,另外4名来自B学校且2名为女棋手
从这7名队员中随机选派4名队员参加第一阶段的比赛
求在参加第一阶段比赛的队员中,恰有1名女棋手的概率;
Ⅱ
设X为选出的4名队员中A、B两校人数之差的绝对值,求随机变量X的分布列和数学期望




某商场计划销售某种产品,现邀请生产该产品的甲、乙两个厂家进场试销
天,两个厂家提供的返利,方案如下:甲厂家每天固定返利
元,且每卖出一件产品厂家再返利
元,乙厂家无固定返利,卖出
件以内(含
件)的产品,每件产品厂家返利
元,超出
件的部分每件返利
元,分别记录其
天内的销售件数,得到如下频数表:
甲厂家销售件数频数表:
乙厂家销售件数频数表:
(1) 现从甲厂家试销的
天中抽取两天,求一天销售量大于
而另一天销售量小于
的概率;
(2)若将频率视作概率,回答以下问题:
①记乙厂家的日返利为
(单位:元),求
的分布列和数学期望;
②商场拟在甲、乙两个厂家中选择一家长期销售,如果仅从日返利额的角度考虑,请利用所学的统计学知识为商场作出选择,并说明理由.









甲厂家销售件数频数表:
销售件数 | ![]() | ![]() | ![]() | ![]() | ![]() |
天数 | ![]() | ![]() | ![]() | ![]() | ![]() |
乙厂家销售件数频数表:
销售件数 | ![]() | ![]() | ![]() | ![]() | ![]() |
天数 | ![]() | ![]() | ![]() | ![]() | ![]() |
(1) 现从甲厂家试销的



(2)若将频率视作概率,回答以下问题:
①记乙厂家的日返利为


②商场拟在甲、乙两个厂家中选择一家长期销售,如果仅从日返利额的角度考虑,请利用所学的统计学知识为商场作出选择,并说明理由.
2020年我国全面建成小康社会,其中小康生活的住房标准是城镇人均住房建筑面积30平方米. 下表为2007年—2016年中,我区城镇和农村人均住房建筑面积统计数据. 单位:平方米.
(Ⅰ)现从上述表格中随机抽取连续两年数据,求这两年中城镇人均住房建筑面积增长不少于2平方米的概率;
(Ⅱ)在给出的10年数据中,随机抽取三年,记
为同年中农村人均住房建筑面积超过城镇人均住房建筑面积4平方米的年数,求
的分布列和数学期望
;
(Ⅲ)将城镇和农村的人均住房建筑面积经四舍五入取整后作为样本数据.记2012—2016年中城镇人均住房面积的方差为
,农村人均住房面积的方差为
,判断
与
的大小.(只需写出结论).
| 2007年 | 2008年 | 2009年 | 2010年 | 2011年 | 2012年 | 2013年 | 2014年 | 2015年 | 2016年 |
城镇 | 18.66 | 20.25 | 22.79 | 25 | 27.1 | 28.3 | 31.6 | 32.9 | 34.6 | 36.6 |
农村 | 23.3 | 24.8 | 26.5 | 27.9 | 30.7 | 32.4 | 34.1 | 37.1 | 41.2 | 45.8 |
(Ⅰ)现从上述表格中随机抽取连续两年数据,求这两年中城镇人均住房建筑面积增长不少于2平方米的概率;
(Ⅱ)在给出的10年数据中,随机抽取三年,记



(Ⅲ)将城镇和农村的人均住房建筑面积经四舍五入取整后作为样本数据.记2012—2016年中城镇人均住房面积的方差为




一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X是一个随机变量,其分布列为P(X),则P(X=4)的值为
A.![]() | B.![]() |
C.![]() | D.![]() |