某超市计划按月订购一种饮料,每天进货量相同,进货成本每瓶3元,售价每瓶5元,每天未售出的饮料最后打4折当天全部处理完根据往年销售经验,每天需求量与当天最高气温单位:有关如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间,需求量为300瓶;如果最高气温低于20,需求量为100瓶为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得到下面的频数分布表:
最高气温






天数
2
16
36
25
7
4
 
以最高气温位于各区间的频率代替最高气温位于该区间的概率.
求六月份这种饮料一天的需求量单位:瓶的分布列,并求出期望EX;
设六月份一天销售这种饮料的利润为单位:元,且六月份这种饮料一天的进货量为单位:瓶,请判断Y的数学期望是否在时取得最大值?
当前题号:1 | 题型:解答题 | 难度:0.99
节能灯的质量通过其正常使用时间来衡量,使用时间越长,表明质量越好,且使用时间大于或等于6千小时的产品为优质品.现用A,B两种不同型号的节能灯做试验,各随机抽取部分产品作为样本,得到试验结果的频率分布直方图如图所示.

以上述试验结果中使用时间落入各组的频率作为相应的概率.
(1)现从大量的A,B两种型号节能灯中各随机抽取两件产品,求恰有两件是优质品的概率;
(2)已知A型节能灯的生产厂家对使用时间小于6千小时的节能灯实行“三包”.通过多年统计发现,A型节能灯每件产品的利润y(单位:元)与其使用时间t(单位:千小时)的关系如下表:
使用时间t(单位:千小时)
t<4
4≤t<6
t≥6
每件产品的利润y(单位:元)
-10
10
20
 
若从大量的A型节能灯中随机抽取两件,其利润之和记为X(单位:元),求X的分布列及数学期望.
当前题号:2 | 题型:解答题 | 难度:0.99
某早餐店对一款新口味的酸奶进行了一段时间试销,定价为5元/瓶.酸奶在试销售期间足量供应,每天的销售数据按照[15,25],(25,35],(35,45],(45,55]分组,得到如下频率分布直方图,以不同销量的频率估计概率.试销结束后,这款酸奶正式上市,厂家只提供整箱批发:大箱每箱50瓶,批发成本85元;小箱每箱30瓶,批发成本65元.由于酸奶保质期短,当天未卖出的只能作废.该早餐店以试销售期间的销量作为参考,决定每天仅批发一箱(计算时每个分组取中间值作为代表,比如销量为(45,55]时看作销量为50瓶).

(1)设早餐店批发一大箱时,当天这款酸奶的利润为随机变量X,批发一小箱时,当天这款酸奶的利润为随机变量Y,求X和Y的分布列;
(2)从早餐店的收益角度和利用所学的知识作为决策依据,该早餐店应每天批发一大箱还是一小箱?(必须作出一种合理的选择)
当前题号:3 | 题型:解答题 | 难度:0.99
小王在某社交网 络的朋友圈中,向在线的甲、乙、丙随机发放红包,每次发放1个.
(1)若小王发放5元的红包2个,求甲恰得1个的概率;
(2)若小王发放3个红包,其中5元的2个,10元的1个,记乙所得红包的总钱数为X,求X的分布列.
当前题号:4 | 题型:解答题 | 难度:0.99
某竞赛的题库系统有60%的自然科学类题目,40%的文化生活类题目(假设题库中的题目总数非常大),参赛者需从题库中抽取3个题目作答,有两种抽取方法:方法一是直接从题库中随机抽取3个题目;方法二是先在题库中按照题目类型用分层抽样的方法抽取10个题目作为样本,再从这10个题目中任意抽取3个题目.
(1)两种方法抽取的3个题目中,恰好有1个自然科学类题目和2个文化生活类题目的概率是否相同?若相同,说明理由;若不同,分别计算出两种抽取方法对应的概率.
(2)已知某参赛者抽取的3个题目恰好有1个自然科学类题目和2个文化生活类题目,且该参赛者答对自然科学类题目的概率为,答对文化生活类题目的概率为.设该参赛者答对的题目数为X,求X的分布列和数学期望.
当前题号:5 | 题型:解答题 | 难度:0.99
“工资条里显红利,个税新政人民心”.随着2019年新年钟声的敲响,我国自1980年以来,力度最大的一次个人所得税(简称个税)改革迎来了全面实施的阶段.2019年1月1日实施的个税新政主要内容包括:(1)个税起征点为5000元;(2)每月应纳税所得额(含税)=收入-个税起征点-专项附加扣除;(3)专项附加扣除包括住房、子女教育和赡养老人等.
新旧个税政策下每月应纳税所得额(含税)计算方法及其对应的税率表如下:
 
旧个税税率表(个税起征点3500元)
新个税税率表(个税起征点5000元)
缴税级数
每月应纳税所得额(含税)=收入-个税起征点
税率(%)
每月应纳税所得额(含税)=收入-个税起征点-专项附加扣除
税率(%)
1
不超过1500元部分
3
不超过3000元部分
3
2
超过1500元至4500元部分
10
超过3000元至12000元部分
10
3
超过4500元至9000元的部分
20
超过12000元至25000元的部分
20
4
超过9000元至35000元的部分
25
超过25000元至35000元的部分
25
5
超过35000元至55000元部分
30
超过35000元至55000元部分
30
···
···
···
···
···
 
随机抽取某市1000名同一收入层级的从业者的相关资料,经统计分析,预估他们2019年的人均月收入24000元.统计资料还表明,他们均符合住房专项扣除;同时,他们每人至多只有一个符合子女教育扣除的孩子,并且他们之中既不符合子女教育扣除又不符合赡养老人扣除、只符合子女教育扣除但不符合赡养老人扣除、只符合赡养老人扣除但不符合子女教育扣除、即符合子女教育扣除又符合赡养老人扣除的人数之比是2:1:1:1;此外,他们均不符合其他专项附加扣除.新个税政策下该市的专项附加扣除标准为:住房1000元/月,子女教育每孩1000元/月,赡养老人2000元/月等.
假设该市该收入层级的从业者都独自享受专项附加扣除,将预估的该市该收入层级的从业者的人均月收入视为其个人月收入.根据样本估计总体的思想,解决如下问题:
(1)设该市该收入层级的从业者2019年月缴个税为元,求的分布列和期望;
(2)根据新旧个税方案,估计从2019年1月开始,经过多少个月,该市该收入层级的从业者各月少缴交的个税之和就超过2019年的月收入?
当前题号:6 | 题型:解答题 | 难度:0.99
若离散型随机变量的分布列为:

0
1



 
则常数的值为(  )
A.B.C.D.1
当前题号:7 | 题型:单选题 | 难度:0.99
某技术公司新开发了两种新产品,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品,现随机抽取这两种产品各100件进行检测,检测结果统计如下:
测试指标





产品
8
12
40
32
8
产品
7
18
40
29
6
 
(1)试分别估计产品,产品为正品的概率;
(2)生产一件产品,若是正品可盈利80元,次品则亏损10元;生产一件产品,若是正品可盈利100元,次品则亏损20元,在(1)的前提下,记为生产1件产品和1件产品所得的总利润,求随机变量的分列和数学期望。
当前题号:8 | 题型:解答题 | 难度:0.99
已知随机变量的分布列如下表:

-1
0
1




 
其中成等差数列,则的值与公差的取值范围分别是(   )
A.B.C.D.
当前题号:9 | 题型:单选题 | 难度:0.99
已知离散型随机变量的分布列为








 
的数学期望( )
A.B.C.D.
当前题号:10 | 题型:单选题 | 难度:0.99