- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机变量
- 离散型随机变量
- + 离散型随机变量的分布列
- 写出简单离散型随机变量分布列
- 利用随机变量分布列的性质解题
- 由随机变量的分布列求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某中学准备在开学时举行一次高三年级优秀学生座谈会,拟请20名来自本校高三(1)(2)(3)(4)班的学生参加,各班邀请的学生数如下表所示;
(1)从这20名学生中随机选出3名学生发言,求这3名学生中任意两个均不属于同一班级的概率;
(2)从这20名学生中随机选出3 名学生发言,设来自高三(3)的学生数为
,求随机变量
的概率分布列和数学期望.
班级 | 高三(1) | 高三(2) | 高三(3) | 高三(4) |
人数 | 4 | 6 | 4 | 6 |
(1)从这20名学生中随机选出3名学生发言,求这3名学生中任意两个均不属于同一班级的概率;
(2)从这20名学生中随机选出3 名学生发言,设来自高三(3)的学生数为


现有长分别为






(1)当





(2)当



②令



第26届世界大学生夏季运动会将于2011年11月12日到23日在深圳举行,为了搞好接待工作,组委会在某学院招募了12名男志愿者和18名女志愿者.将这30名志愿者的身高编成如右所示的茎叶图(单位:cm):若身高在175cm以上(包括175cm)定义为“高个子”,身高在175cm以下(不包括175cm)定义为“非高个子”,且只有“女高个子”才担任“礼仪小姐”.
(1)如果用分层抽样的方法从“高个子”和“非高个子”中中提取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少?
(2)若从所有“高个子”中选3名志愿者,用
表示所选志愿者中能担任“礼仪小姐”的人数,试写出
的分布列,并求
的数学期望.
(1)如果用分层抽样的方法从“高个子”和“非高个子”中中提取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少?
(2)若从所有“高个子”中选3名志愿者,用




一个口袋中装有
个红球
且
和
个白球,一次摸奖从中摸两个球,两个球颜色不同则为中奖.




(1)用表示一次摸奖中奖的概率
;
(2)若,设三次摸奖(每次摸奖后球放回)恰好有
次中奖,求
的数学期望
;
(3)设三次摸奖(每次摸奖后球放回)恰好有一次中奖的概率,当
取何值时,
最大?
(题文)某班同学利用国庆节进行社会实践,对
岁的人群随机抽取
人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:


(1)补全频率分布直方图并求
、
、
的值;
(2)从
岁年龄段的“低碳族”中采用分层抽样法抽取
人参加户外低碳体验活动,其中选取
人作为领队,记选取的
名领队中年龄在
岁的人数为
,求
的分布列和期望
.




(1)补全频率分布直方图并求



(2)从








为防止风沙危害,某地决定建设防护绿化带,种植场树、沙柳等植物,某人一次种植了n株沙柳,各株沙成活与否是相互独立的,成活率为p,设
为成活沙柳的株数,数学期望
,标准差
(1)求n.p的值并写出
的分些列
(2)若有3株或3株以上的沙柳未成活,则需要补种,求需补种沙柳的概率



(1)求n.p的值并写出

(2)若有3株或3株以上的沙柳未成活,则需要补种,求需补种沙柳的概率
设随机变量ξ只能取5,6,7,…,14这10个值,且取每一个值的概率均相等,则P(ξ≥10)=______;P(6<ξ≤14)=________.