某产品有4件正品和2件次品混在了一起,现要把这2件次品找出来,为此每次随机抽取1件进行测试,测试后不放回,直至次品全部被找出为止.
(1)求“第1次和第2次都抽到次品”的概率;
(2)设所要测试的次数为随机变量X,求X的分布列和数学期望.
当前题号:1 | 题型:解答题 | 难度:0.99
已知离散型随机变量ξ的概率分布如表:则其数学期望E(ξ)等于(  )
A.1B.0.6
C.2+3mD.2.4
当前题号:2 | 题型:单选题 | 难度:0.99
袋子中装有若干个均匀的红球和白球,从中摸一个红球的概率是,从中摸出一个红球的概率为.
⑴从A中有放回地摸球,每次摸出一个,有3次摸到红球则停止.
① 求恰好摸5次停止的概率;
② 记5次之内(含5次)摸到红球的次数为,求随机变量的分布列及数学期望.
⑵若A、B两个袋子中的球数之比为1:2,将A、B中的球装在一起后,从中摸出一个红球的概率是,求的值.
当前题号:3 | 题型:解答题 | 难度:0.99
据中国日报网报道:2017年11月13日,TOP500发布的最新一期全球超级计算机500强榜单显示,中国超算在前五名中占据两席,其中超算全球第一“神威太湖之光”完全使用了国产品牌处理器。为了了解国产品牌处理器打开文件的速度,某调查公司对两种国产品牌处理器进行了12次测试,结果如下(数值越小速度越快,单位是MIPS)
 
测试1
测试2
测试3
测试4
测试5
测试6
测试7
测试8
测试9
测试10
测试11
测试12
品牌A
3
6
9
10
4
1
12
17
4
6
6
14
品牌B
2
8
5
4
2
5
8
15
5
12
10
21
 
(Ⅰ)从品牌A的12次测试中,随机抽取一次,求测试结果小于7的概率;
(Ⅱ)从12次测试中,随机抽取三次,记X为品牌A的测试结果大于品牌B的测试结果的次数,求X的分布列和数学期望E(X)
(Ⅲ)经过了解,前6次测试是打开含有文字和表格的文件,后6次测试是打开含有文字和图片的文件.请你依据表中数据,运用所学的统计知识,对这两种国产品牌处理器打开文件的速度进行评价.
当前题号:4 | 题型:解答题 | 难度:0.99
两台车床加工同一种机械零件如下表:
分类
合格品
次品
总计
第一台车床加工的零件数
35
5
40
第二台车床加工的零件数
50
10
60
总计
85
15
100
 

从这100个零件中任取一个零件,求:

(1)取得合格品的概率;

(2)取得零件是第一台车床加工的合格品的概率.

当前题号:5 | 题型:解答题 | 难度:0.99
已知随机变量ξ的分布列如下表,则x=________.
ξ
0
1
2
p
x2
x

 
当前题号:6 | 题型:填空题 | 难度:0.99
某企业2017年招聘员工,其中A、B、C、D、E五种岗位的应聘人数、录用人数和录用比例(精确到1%)如下:
岗位
男性应聘人数
男性录用人数
男性录用比例
女性应聘人数
女性录用人数
女性录用比例
A
269
167
62%
40
24
60%
B
40
12
30%
202
62
31%
C
177
57
32%
184
59
32%
D
44
26
59%
38
22
58%
E
3
2
67%
3
2
67%
总计
533
264
50%
467
169
36%
 
(Ⅰ)从表中所有应聘人员中随机选择1人,试估计此人被录用的概率;
(Ⅱ)从应聘E岗位的6人中随机选择2人.记为这2人中被录用的人数,求的分布列和数学期望;
(Ⅲ)表中A、B、C、D、E各岗位的男性、女性录用比例都接近(二者之差的绝对值不大于5%),但男性的总录用比例却明显高于女性的总录用比例.研究发现,若只考虑其中某四种岗位,则男性、女性的总录用比例也接近,请写出这四种岗位.(只需写出结论)
当前题号:7 | 题型:解答题 | 难度:0.99
某银行的工作人员记录了3月1号到3月15日上午10:00在该银行取号后等待办理业务的人数,如图所示:

从这15天中,随机选取一天,随机变量X表示当天上午10:00在该银行取号后等待办理业务的人数.

(Ⅰ)请把X的分布列补充完整;
 
(Ⅱ)令X的数学期望,若求正整数的最小值;
(Ⅲ)由图判断,从哪天开始的连续五天上午10:00在该银行取号后等待办理业务的人数的均值最大?(结论不要求证明)
当前题号:8 | 题型:解答题 | 难度:0.99
2022年第24届冬奥会将在北京举行。为了推动我国冰雪运动的发展,京西某区兴建了“腾越”冰雪运动基地。在来“腾越”参加冰雪运动的人员中随机抽查100员运动员,他们的身份分布如下:
身份
小学生
初中生
高中生
大学生
职工
合计
人数
40
20
10
20
10
100
 
注:将上表中的频率视为概率
(1)求来“腾越”参加冰雪运动的人员中,小学生的概率;
(2) 若将上表中的频率视为概率,表示来“腾越”参加运动的3人中是大学生的人数,求的分布列及期
当前题号:9 | 题型:解答题 | 难度:0.99
随着互联网的快速发展,基于互联网的共享单车应运而生,某市场研究人员为了了解共享单车运营公司的经营状况,对该公司最近六个月的市场占有率进行了统计,并绘制了相应的折线图:

(1)由折线图可以看出,可用线性回归模型拟合月度市场占有率与月份代码之间的关系,求关于的线性回归方程,并预测公司2017年4月的市场占有率;
(2)为进一步扩大市场,公司拟再采购一批单车,现有采购成本分别为元/辆和1200元/辆的两款车型可供选择,按规定每辆单车最多使用4年,但由于多种原因(如骑行频率等)会导致单车使用寿命各不相同,考虑到公司运营的经济效益,该公司决定先对这两款车型的单车各100辆进行科学模拟测试,得到两款单车使用寿命的频数表如下:
寿命
车型
1年
2年
3年
4年
总计
A
20
35
35
10
100
B
10
30
40
20
100
 
经测算,平均每辆单车每年可以带来收入500元,不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整数年,且以频率作为每辆单车使用寿命的概率,如果你是公司的负责人,以每辆单车产生利润的期望值为决策依据,你会选择采购哪款车型?
参考公式:回归直线方程为,其中.
当前题号:10 | 题型:解答题 | 难度:0.99