- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机变量
- 离散型随机变量
- + 离散型随机变量的分布列
- 写出简单离散型随机变量分布列
- 利用随机变量分布列的性质解题
- 由随机变量的分布列求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
北方某市一次全市高中女生身高统计调查数据显示:全市20000名高中女生的身高(单位:
)服从正态分布
.现从某高中女生中随机抽取50名测量身高,测量发现被测学生身高全部在
和
之间,现将测量结果按如下方式分成6组:第1组
,第2组
,…,第6组
,下图是按上述分组方法得到的频率分布直方图.

(1)求这50名女生身高不低于172
的人数;
(2)在这50名女生身高不低于172
的人中任意抽取2人,将该2人中身高排名(从高到低)在全市前260名的人数记为
,求
的数学期望.
参数数据:
,
.








(1)求这50名女生身高不低于172

(2)在这50名女生身高不低于172



参数数据:


袋中共有8个乒乓球,其中有5个白球,3个红球,这些乒乓球除颜色外完全相同.从袋中随机取出一球,如果取出红球,则把它放回袋中;如果取出白球,则该白球不再放回,并且另补一个红球放入袋中,重复上述过程
次后,袋中红球的个数记为
.
(I)求随机变量
的概率分布及数学期望
;
(Ⅱ)求随机变量
的数学期望
关于
的表达式.


(I)求随机变量


(Ⅱ)求随机变量



为了研究学生的数学核素养与抽象(能力指标
)、推理(能力指标
)、建模(能力指标
)的相关性,并将它们各自量化为1、2、3三个等级,再用综合指标
的值评定学生的数学核心素养,若
,则数学核心素养为一级;若
,则数学核心素养为二级;若
,则数学核心素养为三级,为了了解某校学生的数学核素养,调查人员随机访问了某校10名学生,得到如下:

(1)在这10名学生中任取两人,求这两人的建模能力指标相同的概率;
(2)从数学核心素养等级是一级的学生中任取一人,其综合指标为
,从数学核心素养等级不是一级的学生中任取一人,其综合指标为
,记随机变量
,求随机变量
的分布列及其数学期望.








(1)在这10名学生中任取两人,求这两人的建模能力指标相同的概率;
(2)从数学核心素养等级是一级的学生中任取一人,其综合指标为




由于研究性学习的需要,中学生李华持续收集了手机“微信运动”团队中特定20名成员每天行走的步数,其中某一天的数据记录如下:
5860 6520 7326 6798 7325 8430 8215 7453 7446 6754
7638 6834 6460 6830 9860 8753 9450 9860 7290 7850
对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:
步数分组统计表(设步数为
)
(Ⅰ)写出
的值,并回答这20名“微信运动”团队成员一天行走步数的中位数落在哪个组别;
(Ⅱ)记
组步数数据的平均数与方差分别为
,
,
组步数数据的平均数与方差分别为
,
,试分别比较
与以
,
与
的大小;(只需写出结论)
(Ⅲ)从上述
两个组别的数据中任取2个数据,记这2个数据步数差的绝对值为
,求
的分布列和数学期望.
5860 6520 7326 6798 7325 8430 8215 7453 7446 6754
7638 6834 6460 6830 9860 8753 9450 9860 7290 7850
对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:
步数分组统计表(设步数为

组别 | 步数分组 | 频数 |
![]() | ![]() | 2 |
![]() | ![]() | 10 |
![]() | ![]() | ![]() |
![]() | ![]() | 2 |
![]() | ![]() | ![]() |
(Ⅰ)写出

(Ⅱ)记










(Ⅲ)从上述



某公司为庆祝成立二十周年,特举办《快乐大闯关》竞技类有奖活动,该活动共有四关,由两名男职员与两名女职员组成四人小组,设男职员闯过一至四关概率依次是
,女职员闯过一至四关的概率依次是
(1)求女职员闯过四关的概率;
(2)设
表示四人小组闯过四关的人数,求随机变量
的分布列和数学期望.


(1)求女职员闯过四关的概率;
(2)设


甲、乙、丙三名大学生参加学校组织的“国学达人”挑战赛, 每人均有两轮答题机会,当且仅当第一轮不过关时进行第二轮答题.根据平时经验,甲、乙、丙三名大学生每轮过关的概率分别为
,且三名大学生每轮过关与否互不影响.
(1)求甲、乙、丙三名大学生都不过关的概率;
(2)记
为甲、乙、丙三名大学生中过关的人数,求随机变量
的分布列和数学期望.

(1)求甲、乙、丙三名大学生都不过关的概率;
(2)记


大型水果超市每天以
元/千克的价格从水果基地购进若干
水果,然后以
元/千克的价格出售,若有剩余,则将剩余的水果以
元/千克的价格退回水果基地,为了确定进货数量,该超市记录了
水果最近
天的日需求量(单位:千克),整理得下表:
以
天记录的各日需求量的频率代替各日需求量的概率.
(1)求该超市
水果日需求量
(单位:千克)的分布列;
(2)若该超市一天购进
水果
千克,记超市当天
水果获得的利润为
(单位:元),求
的分布列及其数学期望.






日需求量 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
以

(1)求该超市


(2)若该超市一天购进





图,从甲地到丙地要经过两个十字路口(十字路口
与十字路口
),从乙地到丙地也要经过两个十字路口(十字路口
与十字路口
),设各路口信号灯工作相互独立,且在
,
,
,
路口遇到红灯的概率分别为
,
,
,
.

(1)求一辆车从乙地到丙地至少遇到一个红灯的概率;
(2)若小方驾驶一辆车从甲地出发,小张驾驶一辆车从乙地出发,他们相约在丙地见面,记
表示这两人见面之前车辆行驶路上遇到的红灯的总个数,求
的分布列及数学期望.













(1)求一辆车从乙地到丙地至少遇到一个红灯的概率;
(2)若小方驾驶一辆车从甲地出发,小张驾驶一辆车从乙地出发,他们相约在丙地见面,记

