- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机变量
- 离散型随机变量
- + 离散型随机变量的分布列
- 写出简单离散型随机变量分布列
- 利用随机变量分布列的性质解题
- 由随机变量的分布列求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某电视台的一个智力游戏节目中,有一道将中国四大名著《三国演义》、《水浒传》、《西游记》、《红楼梦》与它们的作者连线的题目,每本名著只能与一名作者连线,每名作者也只能与一本名著连线,每连对一个得2分,连错得-1分,某观众只知道《三国演义》的作者是罗贯中,其他不知道随意连线,将他的得分记作ξ.
(1)求该观众得分ξ为负数的概率;
(2)求ξ的分布列.
(1)求该观众得分ξ为负数的概率;
(2)求ξ的分布列.
为增强学生体质,学校组织体育社团,某宿舍有4人积极报名参加篮球和足球社团,每人只能从两个社团中选择其中一个社团,大家约定:每个人通过掷一枚质地均匀的骰子决定自己参加哪个社团,掷出点数为5或6的人参加篮球社团,掷出点数小于5的人参加足球社团.
(Ⅰ)求这4人中恰有1人参加篮球社团的概率;
(Ⅱ)用
分别表示这4人中参加篮球社团和足球社团的人数,记随机变量
为
和
的乘积,求随机变量
的分布列与数学期望
.
(Ⅰ)求这4人中恰有1人参加篮球社团的概率;
(Ⅱ)用






某食品集团生产的火腿按行业生产标准分成8个等级,等级系数
依次为1,2,3,…,8,其中
为标准
,
为标准
.已知甲车间执行标准
,乙车间执行标准
生产该产品,且两个车间的产品都符合相应的执行标准.
(1)已知甲车间的等级系数
的概率分布列如下表,若
的数学期望E(X1)=6.4,求
,
的值;
(2)为了分析乙车间的等级系数
,从该车间生产的火腿中随机抽取30根,相应的等级系数组成一个样本如下:3 5 3 3 8 5 5 6 3 4 6 3 4 7 5 3 4 8 5 3 8 3 4 3 4 4 7 5 6 7
用该样本的频率分布估计总体,将频率视为概率,求等级系数
的概率分布列和均值;
(3)从乙车间中随机抽取5根火腿,利用(2)的结果推断恰好有三根火腿能达到标准
的概率.







(1)已知甲车间的等级系数




X1 | 5 | 6 | 7 | 8 |
P | 0.2 | ![]() | ![]() | ![]() |
(2)为了分析乙车间的等级系数

用该样本的频率分布估计总体,将频率视为概率,求等级系数

(3)从乙车间中随机抽取5根火腿,利用(2)的结果推断恰好有三根火腿能达到标准

2018年6月14日,第二十一届世界杯足球赛将在俄罗斯拉开帷幕.某地方体育台组织球迷对德国、西班牙、阿根廷、巴西四支热门球队进行竞猜,每位球迷可从四支球队中选出一支球队,现有三人参与竞猜.
(1)若三人中每个人可以选择任何一支球队,且选择每个球队都是等可能的,求四支球队中恰好有两支球队有人选择的概率;
(2)若三人中有一名女球迷,假设女球迷选择德国队的概率为
,男球迷选择德国队的概率为
,记
为三人中选择德国队的人数,求
的分布列和数学期望.
(1)若三人中每个人可以选择任何一支球队,且选择每个球队都是等可能的,求四支球队中恰好有两支球队有人选择的概率;
(2)若三人中有一名女球迷,假设女球迷选择德国队的概率为




在创建“全国文明卫生城”过程中,某市“创城办”为了调查市民对创城工作的了解情况,进行了一次创城知识问卷调查(一位市民只能参加一次).通过随机抽样,得到参加问卷调查的
人的得分(满分
分)统计结果如下表所示:
(1)由频数分布表可以大致认为,此次问卷调查的得分
服从正态分布
,
近似为这
人得分的平均值(同一组中的数据用该组区间的中点值作代表),利用该正态分布,求
;
(2)在(1)的条件下,“创城办”为此次参加问卷调查的市民制定如下奖励方案:
①得分不低于
的可以获赠
次随机话费,得分低于
的可以获赠
次随机话费;
②每次获赠的随机话费和对应的概率为:
现有市民甲参加此次问卷调查,记
(单位:元)为该市民参加问卷调查获赠的话费,求
的分布列与数学期望.
附:参考数据与公式:
.
若
,则
,
,
.


组别 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)由频数分布表可以大致认为,此次问卷调查的得分





(2)在(1)的条件下,“创城办”为此次参加问卷调查的市民制定如下奖励方案:
①得分不低于




②每次获赠的随机话费和对应的概率为:
赠送话费的金额(单位:元) | ![]() | ![]() |
概率 | ![]() | ![]() |
现有市民甲参加此次问卷调查,记


附:参考数据与公式:

若




“某大型水果超市每天以10元/千克的价格从水果基地购进若干A水果,然后以15元/千克的价格出管,若有剩余,则将剩余的水果以8元/千克的价格退回水果基地,为了确定进货数量,该超市记录了A水果最近50天的日需求量(单位:千克),整理得下表:
以50天记录的各日需求量的频率代替各日需求量的概率.
(1)若该超市一天购进
水果150千克,记超市当天
水果获得的利润为
(单位:元),求
的分布列及其数学期望;
(2)若该超市计划一天购进
水果150千克或160千克,请以当天
水果获得的利润的期望值为决策依据,在150千克与160千克之中选其一,应选哪一个?若受市场影响,剩余的水果以7元/千克的价格退回水果基地,又该选哪一个?
日需求量 | 140 | 150 | 160 | 170 | 180 | 190 | 200 |
频数 | 5 | 10 | 8 | 8 | 7 | 7 | 5 |
以50天记录的各日需求量的频率代替各日需求量的概率.
(1)若该超市一天购进




(2)若该超市计划一天购进


袋中有20个大小相同的球,其中标有号码0的球有10个,标有号码
的球有
个,其中
1,2,3,4.现从袋中任取1球,
表示所取球的号码.
(1)求
的分布列、均值和方差;
(2)若
,且
,
,求
,
的值.




(1)求

(2)若




