- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机变量
- 离散型随机变量
- + 离散型随机变量的分布列
- 写出简单离散型随机变量分布列
- 利用随机变量分布列的性质解题
- 由随机变量的分布列求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(本小题满分12分)
有甲、乙两种相互独立的预防措施可以降低某地区某灾情的发生.单独采用甲、乙预防措施后,灾情发生的概率分别为0.08和0.10,且各需要费用60万元和50万元.在不采取任何预防措施的情况下发生灾情的概率为0.3.如果灾情发生,将会造成800万元的损失.(设总费用=采取预防措施的费用+可能发生灾情损失费用)
(I)若预防方案允许甲、乙两种预防措施单独采用,他们各自总费用是多少?
(II)若预防方案允许甲、乙两种预防措施单独采用、联合采用或不采用,请确定预防方案使总费用最少的那个方案.
有甲、乙两种相互独立的预防措施可以降低某地区某灾情的发生.单独采用甲、乙预防措施后,灾情发生的概率分别为0.08和0.10,且各需要费用60万元和50万元.在不采取任何预防措施的情况下发生灾情的概率为0.3.如果灾情发生,将会造成800万元的损失.(设总费用=采取预防措施的费用+可能发生灾情损失费用)
(I)若预防方案允许甲、乙两种预防措施单独采用,他们各自总费用是多少?
(II)若预防方案允许甲、乙两种预防措施单独采用、联合采用或不采用,请确定预防方案使总费用最少的那个方案.
小白鼠被注射某种药物后,只会表现为以下三种症状中的一种:兴奋、无变化(药物没有发生作用)、迟钝.若出现三种症状的概率依次为
现对三只小白鼠注射这种药物.
(Ⅰ)求这三只小白鼠表现症状互不相同的概率;
(Ⅱ)用
表示三只小白鼠共表现症状的种数,求
的分布列及数学期望.

(Ⅰ)求这三只小白鼠表现症状互不相同的概率;
(Ⅱ)用


某市某房地产公司售楼部,对最近100位采用分期付款的购房者进行统计,统计结果如下表所示:
已知分3期付款的频率为
,售楼部销售一套某户型的住房,顾客分1期付款,其利润为10万元;分2期、3期付款其利润都为15万元;分4期、5期付款其利润都为20万元,用
表示销售一套该户型住房的利润.
(1)求上表中
的值;
(2)若以频率分为概率,求事件
:“购买该户型住房的3位顾客中,至多有1位采用分3期付款”的概率
;
(3)若以频率作为概率,求
的分布列及数学期望
.
付款方式 | 分1期 | 分2期 | 分3期 | 分4期 | 分5期 |
频数 | 40 | 20 | ![]() | 10 | ![]() |
已知分3期付款的频率为


(1)求上表中

(2)若以频率分为概率,求事件


(3)若以频率作为概率,求


某市教育部门拟从18名高中数学教师中选拔2人参加省教师技能大赛.为缩短比赛时间,将这18名教师随机分成
,
两组,其选拔赛成绩的茎叶图如图所示.该教育部门先将成绩不低于85分的教师初选出来进行培训后,再从中选拔2人参加省教师技能大赛.

(Ⅰ)若仅从初选选手中随机抽选2人参加省赛,并记抽选的2人中来自
组的人数为
,试求
的分布列和期望值;
(Ⅱ)在(Ⅰ)的条件下,若参加省赛的2人是同性的概率等于
,求初选出来参加培训的男教师和女教师的人数.



(Ⅰ)若仅从初选选手中随机抽选2人参加省赛,并记抽选的2人中来自



(Ⅱ)在(Ⅰ)的条件下,若参加省赛的2人是同性的概率等于

某校要用三辆汽车从新校区把教职工接到老校区,已知从新校区到老校区有两条公路,汽车走公路①堵车的概率为
,不堵车的概率为
;汽车走公路②堵车的概率为
,不堵车的概率为
.若甲、乙两辆汽车走公路①,丙汽车由于其他原因走公路②,且三辆车是否堵车相互之间没有影响.
(1)若三辆汽车中恰有一辆汽车被堵的概率为
,求走公路②堵车的概率;
(2)在(1)的条件下,求三辆汽车中被堵车辆的个数
的分布列和数学期望.




(1)若三辆汽车中恰有一辆汽车被堵的概率为

(2)在(1)的条件下,求三辆汽车中被堵车辆的个数

若某一射手射击所得环数
的分布列为
则此射手“射击一次命中环数
”的概率是( )

![]() | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
![]() | 0.02 | 0.04 | 0.06 | 0.09 | 0.28 | 0.29 | 0.22 |
则此射手“射击一次命中环数

A.0.88 | B.0.12 | C.0.79 | D.0.09 |