- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机变量
- 离散型随机变量
- + 离散型随机变量的分布列
- 写出简单离散型随机变量分布列
- 利用随机变量分布列的性质解题
- 由随机变量的分布列求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
团购已成为时下商家和顾客均非常青睐的一种省钱、高校的消费方式,不少商家同时加入多家团购网.现恰有三个团购网站在
市开展了团购业务,
市某调查公司为调查这三家团购网站在本市的开展情况,从本市已加入了团购网站的商家中随机地抽取了50家进行调查,他们加入这三家团购网站的情况如下图所示.
(1)从所调查的50家商家中任选两家,求他们加入团购网站的数量不相等的概率;
(2)从所调查的50家商家中任取两家,用
表示这两家商家参加的团购网站数量之差的绝对值,求随机变量
的分布列和数学期望;
(3)将频率视为概率,现从
市随机抽取3家已加入团购网站的商家,记其中恰好加入了两个团购网站的商家数为
,试求事件“
”的概率.


(1)从所调查的50家商家中任选两家,求他们加入团购网站的数量不相等的概率;
(2)从所调查的50家商家中任取两家,用


(3)将频率视为概率,现从




某种药种植基地有两处种植区的药材需在下周一、周二两天内采摘完毕,基地员工一天可以完成一处种植区的采摘,由于下雨会影响药材的收益,若基地收益如下表所示:已知下周一和下周二无雨的概率相同且为
,两天是否下雨互不影响,若两天都下雨的概率为

(1)求
及基地的预期收益;
(2)若该基地额外聘请工人,可在周一当天完成全部采摘任务,若周一无雨时收益为
万元,有雨时收益为
万元,且额外聘请工人的成本为
元,问该基地是否应该额外聘请工人,请说明理由.



(1)求

(2)若该基地额外聘请工人,可在周一当天完成全部采摘任务,若周一无雨时收益为



某批产品成箱包装,每箱5件.一用户在购进该批产品前先取出3箱,再从每箱中任意抽取2件产品进行检验.设取出的第一、二、三箱中分别有0件、1件、2件二等品,其余为一等品.
(Ⅰ)用ξ表示抽检的6件产品中二等品的件数,求ξ的分布列
(Ⅱ)若抽检的6件产品中有2件或2件以上二等品,用户就拒绝购买这批产品,求这批产品级用户拒绝的概率.
(Ⅰ)用ξ表示抽检的6件产品中二等品的件数,求ξ的分布列
(Ⅱ)若抽检的6件产品中有2件或2件以上二等品,用户就拒绝购买这批产品,求这批产品级用户拒绝的概率.
为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽取14件和5件,测量产品中微量元素
,
的含量(单位:毫克).下表是乙厂的5件产品的测量数据:

当产品中的微量元素
,
满足
且
时,该产品为优等品
(1)若甲厂生产的产品共98件,用上述样本数据估计乙厂生产的优等品的数量;
(2)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数
的分布列及数学期望.



当产品中的微量元素




(1)若甲厂生产的产品共98件,用上述样本数据估计乙厂生产的优等品的数量;
(2)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数

甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为
,乙获胜的概率为
,各局比赛结果相互独立.
(1)求甲在4局以内(含4局)赢得比赛的概率;
(2)记X为比赛决出胜负时的总局数,求X的分布列和均值(数学期望).


(1)求甲在4局以内(含4局)赢得比赛的概率;
(2)记X为比赛决出胜负时的总局数,求X的分布列和均值(数学期望).
在一次招聘中,主考官要求应聘者从6道备选题中一次性随机抽取3道题,并独立完成所抽取的3道题。甲能正确完成其中的4道题,乙能正确完成每道题的概率为
,且每道题完成与否互不影响。

⑴记所抽取的3道题中,甲答对的题数为X,则X的分布列为____________;
⑵记乙能答对的题数为Y,则Y的期望为_________.
某班同学利用寒假在三个小区进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,这两族人数占各自小区总人数的比例如下:
(1)从A,B,C三个社区中各选一人,求恰好有2人是低碳族的概率;
(2)在B小区中随机选择20户,从中抽取的3户中“非低碳族”数量为X,求X的分布列.
A小区 | 低碳族 | 非低碳族 |
比例 | ![]() | ![]() |
B小区 | 低碳族 | 非低碳族 |
比例 | ![]() | ![]() |
C小区 | 低碳族 | 非低碳族 |
比例 | ![]() | ![]() |
(1)从A,B,C三个社区中各选一人,求恰好有2人是低碳族的概率;
(2)在B小区中随机选择20户,从中抽取的3户中“非低碳族”数量为X,求X的分布列.