- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机变量
- 离散型随机变量
- + 离散型随机变量的分布列
- 写出简单离散型随机变量分布列
- 利用随机变量分布列的性质解题
- 由随机变量的分布列求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
乒乓球台面被球网分成甲、乙两部分,如图,
















(Ⅰ)小明的两次回球的落点中恰有一次的落点在乙上的概率;
(Ⅱ)两次回球结束后,小明得分之和

随机将
这2n个连续正整数分成A,B两组,每组n个数,A组最小数为
,最大数为
;B组最小数为
,最大数为
,记
(1)当
时,求
的分布列和数学期望;
(2)令C表示事件
与
的取值恰好相等,求事件C发生的概率
;
(3)对(2)中的事件C,
表示C的对立事件,判断
和
的大小关系,并说明理由.






(1)当


(2)令C表示事件



(3)对(2)中的事件C,



一个盒子中装有大小相同的小球
个,在小球上分别标有1,2,3,
,
的号码,已知从盒子中随机的取出两个球,两球的号码最大值为
的概率为
,
(Ⅰ)问:盒子中装有几个小球?
(Ⅱ)现从盒子中随机的取出4个球,记所取4个球的号码中,连续自然数的个数的最大值为随机变量
(如取2468时,
=1;取1246时,
=2,取1235时,
=3),
(ⅰ)求
的值;(ⅱ)求随机变量
的分布列及均值.





(Ⅰ)问:盒子中装有几个小球?
(Ⅱ)现从盒子中随机的取出4个球,记所取4个球的号码中,连续自然数的个数的最大值为随机变量




(ⅰ)求


甲有一只放有x个红球,y个黄球,z个白球的箱子,乙有一只放有3个红球,2个黄球,1个白球的箱子,
(1)两个各自从自己的箱子中任取一球,规定:当两球同色时甲胜,异色时乙胜。若
用x、y、z表示甲胜的概率;
(2)在(1)下又规定当甲取红、黄、白球而胜的得分分别为1、2、3分,否则得0分,求甲得分的期望的最大值及此时x、y、z的值。
(1)两个各自从自己的箱子中任取一球,规定:当两球同色时甲胜,异色时乙胜。若

(2)在(1)下又规定当甲取红、黄、白球而胜的得分分别为1、2、3分,否则得0分,求甲得分的期望的最大值及此时x、y、z的值。
(本小题满分12分)
某员工参加
项技能测试(技能测试项目的顺序固定),假设该员工在每一项技能测试中获得优秀的概率均为0.9,且不同技能测试是否获得优秀相互独立.该员工所在公司规定:三项均获得优秀则奖励
千元,有
项获得优秀奖励
千元,一项获得优秀奖励
千元,没有项目获得优秀则没有奖励.记
为该员工通过技能测试获得的奖励金(单位:元).
(Ⅰ)求该员工通过技能测试可能获得奖励金
的分布列;
(Ⅱ)求该员工通过技能测试可能获得的奖励金
的均值.
某员工参加






(Ⅰ)求该员工通过技能测试可能获得奖励金

(Ⅱ)求该员工通过技能测试可能获得的奖励金

为了预防春季流感,市防疫部门提供了编号为1,2,3,4的四种疫苗供市民选择注射,每个人均能从中任选一个编号的疫苗接种,现有甲,乙,丙三人接种疫苗.
(I )求三人注射的疫苗编号互不相同的概率;
(II)设三人中选择的疫苗编号最大数为
,求
的分布列及数学期望.
(I )求三人注射的疫苗编号互不相同的概率;
(II)设三人中选择的疫苗编号最大数为

