- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机变量
- 离散型随机变量
- + 离散型随机变量的分布列
- 写出简单离散型随机变量分布列
- 利用随机变量分布列的性质解题
- 由随机变量的分布列求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
甲、乙两名射手各进行一次射击,射中环数
、
的分布列分别为:
(I)确定
、
的值,并求两人各进行一次射击,都射中
环的概率;
(II)两各射手各射击一次为一轮射击,如果在某一轮射击中两人都射中
环,则射击结束,否则继续射击,但最多不超过
轮,求结束时射击轮次数
的分布列及期望,并求结束时射击轮次超过
次的概率.


![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |
(I)确定



(II)两各射手各射击一次为一轮射击,如果在某一轮射击中两人都射中




某军事院校招生要经过考试和体检两个过程,在考试通过后才有体检的机会,两项都合格则被录取.若甲、乙、丙三名考生能通过考试的概率分别为0.4,0.5,0.8,体检合格的概率分别为0.5,0.4,0.25,每名考生是否被录取相互之间没有影响.
(1)求恰有一人通过考试的概率;
(2)设被录取的人数为
求
的分布列和数学期望.
(1)求恰有一人通过考试的概率;
(2)设被录取的人数为


某企业生产的一批产品中有一、二、三等品及次品共四个等级,1件不同等级产品的利润
(单位:元)如表1,从这批产品中随机抽取出1件产品,该件产品为不同等级的概率如表2.
若从这批产品中随机抽取出的1件产品的平均利润(即数学期望)为
元.
、
的值;
(2)从这批产品中随机取出3件产品,求这3件产品的总利润不低于17元的概率.
(单位:元)如表1,从这批产品中随机抽取出1件产品,该件产品为不同等级的概率如表2.
若从这批产品中随机抽取出的1件产品的平均利润(即数学期望)为

表1
等级 | 一等品 | 二等品 | 三等品 | 次品 |
表2
等级 | 一等品 | 二等品 | 三等品 | 次品 |
利润 |
(1)求


(2)从这批产品中随机取出3件产品,求这3件产品的总利润不低于17元的概率.
小张参加了清华大学、上海交大、浙江大学三个学校的自主招生考试,各学校是否通过相互独立,其通过的概率分别为
、
、
(允许小张同时通过多个学校)
(1)小张没有通过任何一所学校的概率;
(2)设小张通过的学校个数为ξ,求ξ的分布列和它的数学期望.



(1)小张没有通过任何一所学校的概率;
(2)设小张通过的学校个数为ξ,求ξ的分布列和它的数学期望.
某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响.已知学生小张只选甲的概率为0.08,只选修甲和乙的概率是0.12,至少选修一门的概率是0.88,用ξ表示小张选修的课程门数和没有选修的课程门数的乘积.
(Ⅰ)求学生小张选修甲的概率;
(Ⅱ)记“函数f(x)=x2+ξx为R上的偶函数”为事件A,求事件A的概率;
(Ⅲ)求ξ的分布列和数学期望.
(Ⅰ)求学生小张选修甲的概率;
(Ⅱ)记“函数f(x)=x2+ξx为R上的偶函数”为事件A,求事件A的概率;
(Ⅲ)求ξ的分布列和数学期望.
某电视台“挑战60秒”活动规定上台演唱:
(I)连续达到60秒可转动转盘(转盘为八等分圆盘)一次进行抽奖,达到90秒可转两次,达到120秒可转三次(奖金累加).

(2)转盘指针落在I、II、III区依次为一等奖(500元)、二等奖(200元)、三等奖(100元),落在其它区域不奖励.
(3)演唱时间从开始到三位评委中至少1人呜啰为止,现有一演唱者演唱时间为100秒.
①求此人中一等奖的概率;
②设此人所得奖金为
,求
的分布列及数学期望
.
(I)连续达到60秒可转动转盘(转盘为八等分圆盘)一次进行抽奖,达到90秒可转两次,达到120秒可转三次(奖金累加).

(2)转盘指针落在I、II、III区依次为一等奖(500元)、二等奖(200元)、三等奖(100元),落在其它区域不奖励.
(3)演唱时间从开始到三位评委中至少1人呜啰为止,现有一演唱者演唱时间为100秒.
①求此人中一等奖的概率;
②设此人所得奖金为



2008年5月12日,四川汶川发生8.0级特大地震,通往灾区的道路全部中断. 5月12日晚,抗震救灾指挥部决定从水路(一支队伍)、陆路(东南和西北两个方向各一支队伍)和空中(一支队伍)同时向灾区挺进.在5月13日,仍时有较强余震发生,天气状况也不利于空中航行. 已知当天从水路抵达灾区的概率是
,从陆路每个方向抵达灾区的概率都是
,从空中抵达灾区的概率是
.
(1)求在5月13日恰有1支队伍抵达灾区的概率;
(2)求在5月13日抵达灾区的队伍数
的数学期望.



(1)求在5月13日恰有1支队伍抵达灾区的概率;
(2)求在5月13日抵达灾区的队伍数

导弹发射的事故率为0.01,若发射10次,其出事故的次数为ξ,则下列结论正确的是
A.P(ξ=k)=0.01k·0.9910-k | B.P(ξ=k)=![]() |
C.Eξ=0.1 | D.Dξ=0.1 |
口袋中有6个大小相同的小球,其中1个小球标有数字“3”,2个小球标有数字“2”,3个小球标有数字“1”,每次从中任取一个小球,取后放回,连续抽取两次.
(I)求两次取出的小球所标数字不同的概率;
(II)记两次取出的小球所标数字之和为

