刷题首页
题库
高中数学
题干
(本小题满分12分)
某员工参加
项技能测试(技能测试项目的顺序固定),假设该员工在每一项技能测试中获得优秀的概率均为0.9,且不同技能测试是否获得优秀相互独立.该员工所在公司规定:三项均获得优秀则奖励
千元,有
项获得优秀奖励
千元,一项获得优秀奖励
千元,没有项目获得优秀则没有奖励.记
为该员工通过技能测试获得的奖励金(单位:元).
(Ⅰ)求该员工通过技能测试可能获得奖励金
的分布列;
(Ⅱ)求该员工通过技能测试可能获得的奖励金
的均值.
上一题
下一题
0.99难度 解答题 更新时间:2011-03-04 02:06:42
答案(点此获取答案解析)
同类题1
集成电路E由3个不同的电子元件组成,现由于元件老化,3个电子元件能正常工作的概率分别降为
,
,
,且每个电子元件能否正常工作相互独立。若3个电子元件中至少有2个正常工作,则E能正常工作,否则就需要维修,且维修集成电路E所需要费用为100元。
(Ⅰ)求集成电路E需要维修的概率;
(Ⅱ)若某电子设备共由2个集成电路E组成,设X为该电子设备需要维修集成电路所需费用。求X的分布列和均值.
同类题2
为了研究学生的数学核素养与抽象(能力指标
)、推理(能力指标
)、建模(能力指标
)的相关性,并将它们各自量化为1、2、3三个等级,再用综合指标
的值评定学生的数学核心素养,若
,则数学核心素养为一级;若
,则数学核心素养为二级;若
,则数学核心素养为三级,为了了解某校学生的数学核素养,调查人员随机访问了某校10名学生,得到如下:
(1)在这10名学生中任取两人,求这两人的建模能力指标相同的概率;
(2)从数学核心素养等级是一级的学生中任取一人,其综合指标为
,从数学核心素养等级不是一级的学生中任取一人,其综合指标为
,记随机变量
,求随机变量
的分布列及其数学期望.
同类题3
某投资公司对以下两个项目进行前期市场调研:项目
:通信设备.根据调研,投资到该项目上,所有可能结果为:获利
、损失
、不赔不赚,且这三种情况发生的概率分别为
;项目
:新能源汽车.根据调研,投资到该项目上,所有可能结果为:获利
、亏损
,且这两种情况发生的概率分别为
.经测算,当投入
两个项目的资金相等时,它们所获得的平均收益(即数学期望)也相等.
(1)求
的值;
(2)若将
万元全部投到其中的一个项目,请你从投资回报稳定性考虑,为投资公司选择一个合理的项目,并说明理由.
同类题4
为了解甲、乙两厂的产品质量,分别从两厂生产的产品中各随机抽取10件,测量产品中某种元素的含量(单位:毫克),其测量数据的茎叶图如图所示.
规定:当产品中此种元素的含量大于18毫克时,认定该产品为优等品.
(1)试比较甲、乙两厂生产的产品中该种元素含量的平均值的大小;
(2)从乙厂抽出的上述10件产品中随机抽取3件,求抽到的3件产品中优等品数X的分布列及数学期望.
同类题5
袋中装着标有数字1,2,3,4,5的小球各2个,从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等,用
表示取出的3个小球上的最大数字.
(Ⅰ)取出的3个小球上的数字互不相同的概率;
(Ⅱ)随机变量
的概率分布和数学期望;
(Ⅲ)计分介于20分到40分之间的概率.
相关知识点
计数原理与概率统计
随机变量及其分布
离散型随机变量及其分布列
离散型随机变量的分布列
求离散型随机变量的均值