刷题首页
题库
高中数学
题干
装有除颜色外完全相同的6个白球、4个黑球和2个黄球的箱中随机地取出两个球,规定每取出1个黑球赢2元,而每取出1个白球输1元,取出黄球无输赢.
(1)以
X
表示赢得的钱数,随机变量
X
可以取哪些值?求
X
的分布列;
(2)求出赢钱(即
时)的概率.
上一题
下一题
0.99难度 解答题 更新时间:2019-06-06 02:39:17
答案(点此获取答案解析)
同类题1
从装有2个红球,2个白球和1个黑球的袋中逐一取球,已知每个球被抽取的可能性相同.
(1)若抽取后又放回,抽取3次,分别求恰有2次是红球的概率及抽全三种颜色球的概率;
(2)若抽取后不放回,求抽完红球所需次数不少于4次的概率;
(3)记红球、白球、黑球对应的号码为1,2,3,现从盒中有放回地先后抽出的两球的号码分别记为
,记
,求随机变量
的分布列.
同类题2
为迎接2022年冬奥会,北京市组织中学生开展冰雪运动的培训活动,并在培训结束后对学生进行了考核.记
表示学生的考核成绩,并规定
为考核优秀.为了了解本次培训活动的效果,在参加培训的学生中随机抽取了30名学生的考核成绩,并作成如下茎叶图:
(Ⅰ)从参加培训的学生中随机选取1人,请根据图中数据,估计这名学生考核优秀的概率;
(Ⅱ)从图中考核成绩满足
的学生中任取3人,设
表示这3人中成绩满足
的人数,求
的分布列和数学期望;
(Ⅲ)根据以往培训数据,规定当
时培训有效.请根据图中数据,判断此次中学生冰雪培训活动是否有效,并说明理由.
同类题3
某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响.已知学生小张只选甲的概率为0.08,只选修甲和乙的概率是0.12,至少选修一门的概率是0.88,用ξ表示小张选修的课程门数和没有选修的课程门数的乘积.
(Ⅰ)求学生小张选修甲的概率;
(Ⅱ)记“函数
f
(
x
)=
x
2
+ξ
x
为
R
上的偶函数”为事件
A
,求事件
A
的概率;
(Ⅲ)求ξ的分布列和数学期望.
同类题4
为响应党中央号召,学校以“我们都是追梦人”为主题举行知识竞赛。现有10道题,其中6道甲类题,4道乙类题,王同学从中任取3道题解答.
(Ⅰ)求王同学至少取到2道乙类题的概率;
(Ⅱ)如果王同学答对每道甲类题的概率都是
,答对每道乙类题的概率都是
,且各题答对与否相互独立,已知王同学恰好选中2道甲类题,1道乙类题,用
表示王同学答对题的个数,求随机变量
的分布列和数学期望.
同类题5
以下茎叶图记录了甲、乙两组各三名同学在期末考试中的数学成绩.乙组记录中有一个数字模糊,无法确认,假设这个数字具有随机性,并在图中以
表示.
(Ⅰ)若甲、乙两个小组的数学平均成绩相同,求
的值;
(Ⅱ)求乙组平均成绩超过甲组平均成绩的概率;
(Ⅲ)当
时,分别从甲、乙两组中各随机选取一名同学,记这两名同学数学成绩之差的绝对值为
,求随机变量
的分布列和数学期望.
相关知识点
计数原理与概率统计
随机变量及其分布
离散型随机变量及其分布列
离散型随机变量的分布列
写出简单离散型随机变量分布列