一盒中有12个乒乓球,其中9个新的3个旧的,从盒子中任取3个球来用,用完后装回盒中,此时盒中旧球个数X是一个随机变量,其分布列为P(X),则P(X=4)的值为(  )
A.B.C.D.
当前题号:1 | 题型:单选题 | 难度:0.99
袋中有大小相同的红球6个,白球5个,从袋中每次任意取出一个球,直到取出的球是白色为止,所需要的取球次数为随机变量X,则X的可能取值为(  )
A.1,2,…,6B.1,2,…,7C.1,2,…,11D.1,2,3…
当前题号:2 | 题型:单选题 | 难度:0.99
今年五一小长假,以洪崖洞、李子坝轻轨、长江索道、一棵树观景台为代表的网红景点,把重庆推上全国旅游人气搒的新高.外地客人小胖准备游览上面这个景点,他游览每一个景台的概率都是,且他是否游览哪个景点互不影响.设表示小胖离开重庆时游览的景点数与没有游览的景点数之差的绝对值.
(1)记“函数是实数集上的偶函数”为事件,求事件的概率.
(2)求的分布列及数学期望.
当前题号:3 | 题型:解答题 | 难度:0.99
某迷宫有三个通道,进入迷宫的每个人都要经过一扇智能门.首次到达此门,系统会随机(即等可能)为你打开一个通道.若是1号通道,则需要1小时走出迷宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门,再次到达智能门时,系统会随机打开一个你未到过的通道,直至走出迷宫为止.ξ表示走出迷宫所需的时间.
(1)求ξ的分布列;
(2)求ξ的数学期望.
当前题号:4 | 题型:解答题 | 难度:0.99
某企业有甲、乙两个研发小组,他们研究新产品成功的概率分别为,现安排甲组研发新产品,乙组研发新产品,设甲、乙两组的研发相互独立.
(1)求恰好有一种新产品研发成功的概率;
(2)若新产品研发成功,预计企业可获得利润120万元,不成功则会亏损50万元;若新产品研发成功,企业可获得利润100万元,不成功则会亏损40万元,求该企业获利万元的分布列.
当前题号:5 | 题型:解答题 | 难度:0.99
从装有2只红球,2只白球和1只黑球的袋中逐一取球,已知每只球被抽取的可能性相同.
(Ⅰ)若抽取后又放回,抽3次.
(ⅰ)分别求恰2次为红球的概率及抽全三种颜色球的概率;
(ⅱ)求抽到红球次数的数学期望及方差.
(Ⅱ)若抽取后不放回,写出抽完红球所需次数的分布列.
当前题号:6 | 题型:解答题 | 难度:0.99
设离散型随机变量X的分布列为:
X
-1
0
1
2
3
P





 
则下列各式中成立的是(  )
A.P(X=1.5)=0B.P(X>-1)=1C.P(X<3)=1D.P(X<0)=0
当前题号:7 | 题型:单选题 | 难度:0.99
已知随机变量X的分布列为P(X=i)=  (i=1,2,3),则P(X=2)=_____.
当前题号:8 | 题型:填空题 | 难度:0.99
第一届“一带一路”国际合作高峰论坛于2017年5月14日至15日在北京举行,这是2017年我国重要的主场外交活动,对推动国际和地区合作具有重要意义.某高中政教处为了调查学生对“一带一路”的关注情况,在全校组织了“一带一路知多少”的知识问卷测试,并从中随机抽取了12份问卷,得到其测试成绩(百分制),如茎叶图所示.

(1)写出该样本的众数、中位数,若该校共有3000名学生,试估计该校测试成绩在70分以上的人数;
(2)从所抽取的70分以上的学生中再随机选取4人.
①记表示选取4人的成绩的平均数,求
②记表示测试成绩在80分以上的人数,求的分布和数学期望.
当前题号:9 | 题型:解答题 | 难度:0.99
有7位歌手(1至7号)参加一场歌唱比赛, 由550名大众评委现场投票决定歌手名次, 根据年龄将大众评委分为5组, 各组的人数如下:
组别
A
B
C
D
E
人数
50
100
200
150
50
(Ⅰ) 为了调查大众评委对7位歌手的支持状况, 现用分层抽样方法从各组中抽取若干评委, 其中从B组中抽取了6人. 请将其余各组抽取的人数填入下表.
组别
A
B
C
D
E
人数
50
100
200
150
50
抽取人数
 
6
 
 
 
(Ⅱ) 在(Ⅰ)中, 若A, C两组被抽到的评委中各有2人支持1号歌手, 现从这两组被抽到的评委中分别任选1人, 求这2人都支持1号歌手的概率.
当前题号:10 | 题型:解答题 | 难度:0.99