为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,;当两条棱平行时,的值为两条棱之间的距离;当两条棱异面时,
(1)求概率
(2)求的分布列,并求其数学期望
当前题号:1 | 题型:解答题 | 难度:0.99
共享单车因绿色、环保、健康的出行方式,在国内得到迅速推广.最近,某机构在某地区随机采访了10名男士和10名女士,结果男士、女士中分别有7人、6人表示“经常骑共享单车出行”,其他人表示“较少或不选择骑共享单车出行”.
(1)从这些男士和女士中各抽取一人,求至少有一人“经常骑共享单车出行”的概率;
(2)从这些男士中抽取一人,女士中抽取两人,记这三人中“经常骑共享单车出行”的人数为,求的分布列与数学期望.
当前题号:2 | 题型:解答题 | 难度:0.99
已知随机变量满足,其中.令随机变量,则(   )
A.B.
C.D.
当前题号:3 | 题型:单选题 | 难度:0.99
小波以游戏方式决定是参加学校合唱团还是参加学校排球队,游戏规则为:以0为起点,再从(如图)这8个点中任取两点分别分终点得到两个向量,记这两个向量的数量积为X.若X=0就参加学校合唱团,否则就参加学校排球队.

(1)求小波参加学校合唱团的概率;
(2)求X的分布列和数学期望.
当前题号:4 | 题型:解答题 | 难度:0.99
某公司打算引进一台设备使用一年,现有甲、乙两种设备可供选择.甲设备每台10000元,乙设备每台9000元.此外设备使用期间还需维修,对于每台设备,一年间三次及三次以内免费维修,三次以外的维修费用均为每次1000元.该公司统计了曾使用过的甲、乙各50台设备在一年间的维修次数,得到下面的频数分布表,以这两种设备分别在50台中的维修次数频率代替维修次数发生的概率.
维修次数
2
3
4
5
6
甲设备
5
10
30
5
0
乙设备
0
5
15
15
15
 
(1)设甲、乙两种设备每台购买和一年间维修的花费总额分别为,求的分布列;
(2)若以数学期望为决策依据,希望设备购买和一年间维修的花费总额尽量低,且维修次数尽量少,则需要购买哪种设备?请说明理由.
当前题号:5 | 题型:解答题 | 难度:0.99
某种水果按照果径大小可分为四类:标准果、优质果、精品果、礼品果.某采购商从采购的一批水果中随机抽取个,利用水果的等级分类标准得到的数据如下:
等级
标准果
优质果
精品果
礼品果
个数
10
30
40
20
 
(1)若将频率视为概率,从这个水果中有放回地随机抽取个,求恰好有个水果是礼品果的概率.(结果用分数表示)
(2)用样本估计总体,果园老板提出两种购销方案给采购商参考.
方案:不分类卖出,单价为.
方案:分类卖出,分类后的水果售价如下:
等级
标准果
优质果
精品果
礼品果
售价(元/kg)
16
18
22
24
 
从采购商的角度考虑,应该采用哪种方案?
(3)用分层抽样的方法从这个水果中抽取个,再从抽取的个水果中随机抽取个,表示抽取的是精品果的数量,求的分布列及数学期望.
当前题号:6 | 题型:解答题 | 难度:0.99
某学校为了学生的健康,对课间操活动做了如下规定:课间操时间若有雾霾则停止课间操,若无雾霾则组织课间操.预报得知,在未来一周从周一到周五的课间操时间出现雾霾的概率是:前3天均为,后2天均为,且每一天出现雾霾与否是相互独立的.
(1)求未来5天至少一天停止课间操的概率;
(2)求未来5天组织课间操的天数X的分布列和数学期望.
当前题号:7 | 题型:解答题 | 难度:0.99
某电子工厂生产一种电子元件,产品出厂前要检出所有次品.已知这种电子元件次品率为0.01,且这种电子元件是否为次品相互独立.现要检测3000个这种电子元件,检测的流程是:先将这3000个电子元件分成个数相等的若干组,设每组有个电子元件,将每组的个电子元件串联起来,成组进行检测,若检测通过,则本组全部电子元件为正品,不需要再检测;若检测不通过,则本组至少有一个电子元件是次品,再对本组个电子元件逐一检测.
(1)当时,估算一组待检测电子元件中有次品的概率;
(2)设一组电子元件的检测次数为,求的数学期望;
(3)估算当为何值时,每个电子元件的检测次数最小,并估算此时检测的总次数(提示:利用进行估算).
当前题号:8 | 题型:解答题 | 难度:0.99
交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为a元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如下表:
交强险浮动因素和浮动费率比率表
 
浮动因素
浮动比率

上一年度未发生有责任道路交通事故
下浮10%

上两年度未发生有责任道路交通事故
下浮

上三年度未发生有责任道路交通事故
下浮30%

上一个年度发生一次有责任不涉及死亡的道路交通事故
0%

上一个年度发生两次及两次以上有责任不涉及死亡的道路交通事故
上浮10%

上一个年度发生有责任交通死亡事故
上浮30%
 
 
 
 
某机构为了解某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:
类型
A1
A2
A3
A4
A5
A6
数量
10
5
5
20
15
5
 
以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:
(1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定,,记为某同学家的一辆该品牌车在第四年续保时的费用,求的分布列与数学期望;(数学期望值保留到个位数字)
(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元:
①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;
②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.
当前题号:9 | 题型:解答题 | 难度:0.99