某种水果按照果径大小可分为四类:标准果、优质果、精品果、礼品果.某采购商从采购的一批水果中随机抽取个,利用水果的等级分类标准得到的数据如下:
等级
标准果
优质果
精品果
礼品果
个数
10
30
40
20
 
(1)若将频率视为概率,从这个水果中有放回地随机抽取个,求恰好有个水果是礼品果的概率;(结果用分数表示)
(2)用分层抽样的方法从这个水果中抽取个,再从抽取的个水果中随机抽取个,表示抽取的是精品果的数量,求的分布列及数学期望
当前题号:1 | 题型:解答题 | 难度:0.99
近一段时间来,由于受非洲猪瘟的影响,各地猪肉价格普遍上涨,生猪供不应求。各大养猪场正面临巨大挑战,目前各项针对性政策措施对于生猪整体产能恢复、激发养殖户积极性的作用正在逐步显现.
现有甲、乙两个规模一致的大型养猪场,均养有1万头猪.根据猪的重量,将其分为三个成长阶段如下表.
猪生长的三个阶段
阶段
幼年期
成长期
成年期
重量(Kg



 
根据以往经验,两个养猪场内猪的体重均近似服从正态分布.
由于我国有关部门加强对大型养猪场即将投放市场的成年期的猪监控力度,高度重视其质量保证,为了养出健康的成年活猪,甲、乙两养猪场引入两种不同的防控及养殖模式.已知甲、乙两个养猪场内一头成年期猪能通过质检合格的概率分别为
(1)试估算各养猪场三个阶段的猪的数量;
(2)已知甲养猪场出售一头成年期的猪,若为健康合格的猪,则可盈利元,若为不合格的猪,则亏损元;乙养猪场出售一头成年期的猪,若为健康合格的猪,则可盈利元,若为不合格的猪,则亏损元.记为甲、乙养猪场各出售一头成年期猪所得的总利润,求随机变量的分布列,假设两养猪场均能把成年期猪售完,求两养猪场的总利润期望值.
(参考数据:若,则
当前题号:2 | 题型:解答题 | 难度:0.99
已知随机变量的分布列为








 
.
(1)求的值;
(2)若,求的值.
当前题号:3 | 题型:解答题 | 难度:0.99
学生考试中答对但得不了满分的原因多为答题不规范,具体表现为:解题结果正确,无明显推理错误,但语言不规范、缺少必要文字说明、卷面字迹不清、得分要点缺失等,记此类解答为“类解答”.为评估此类解答导致的失分情况,某市教研室做了一项试验:从某次考试的数学试卷中随机抽取若干属于“类解答”的题目,扫描后由近百名数学老师集体评阅,统计发现,满分12分的题,阅卷老师所评分数及各分数所占比例大约如下表:
教师评分(满分12分)
11
10
9
各分数所占比例



 
某次数学考试试卷评阅采用“双评+仲裁”的方式,规则如下:两名老师独立评分,称为一评和二评,当两者所评分数之差的绝对值小于等于1分时,取两者平均分为该题得分;当两者所评分数之差的绝对值大于1分时,再由第三位老师评分,称之为仲裁,取仲裁分数和一、二评中与之接近的分数的平均分为该题得分;当一、二评分数和仲裁分数差值的绝对值相同时,取仲裁分数和前两评中较高的分数的平均分为该题得分.(假设本次考试阅卷老师对满分为12分的题目中的“类解答”所评分数及比例均如上表所示,比例视为概率,且一、二评与仲裁三位老师评分互不影响).
(1)本次数学考试中甲同学某题(满分12分)的解答属于“类解答”,求甲同学此题得分的分布列及数学期望
(2)本次数学考试有6个解答题,每题满分均为12分,同学乙6个题的解答均为“类解答”,记该同学6个题中得分为的题目个数为,计算事件“”的概率.
当前题号:4 | 题型:解答题 | 难度:0.99
水污染现状与工业废水排放密切相关,某工厂深人贯彻科学发展观,努力提高污水收集处理水平,其污水处理程序如下:原始污水必先经过A系统处理,处理后的污水(A级水)达到环保标准(简称达标)的概率为p(0<p<1).经化验检测,若确认达标便可直接排放;若不达标则必须进行B系统处理后直接排放.
某厂现有4个标准水量的A级水池,分别取样、检测,多个污水样本检测时,既可以逐个化验,也可以将若干个样本混合在一起化验,混合样本中只要有样本不达标,则混合样本的化验结果必不达标,若混合样本不达标,则该组中各个样本必须再逐个化验;若混合样本达标,则原水池的污水直接排放
现有以下四种方案:
方案一:逐个化验;
方案二:平均分成两组化验;方案三;三个样本混在一起化验,剩下的一个单独化验;
方案四:四个样本混在一起化验.
化验次数的期望值越小,则方案越"优".
(1)若,求2个A级水样本混合化验结果不达标的概率;
(2)①若,现有4个A级水样本需要化验,请问:方案一、二、四中哪个最“优"?②若“方案三”比“方案四"更“优”,求p的取值范围.
当前题号:5 | 题型:解答题 | 难度:0.99
在某校组织的高二女子排球比赛中,有两个球队进入决赛,决赛采用7局4胜制.假设两队在每场比赛中获胜的概率都是.并记需要比赛的场数为
(Ⅰ)求大于4的概率;
(Ⅱ)求的分布列与数学期望.
当前题号:6 | 题型:解答题 | 难度:0.99
在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:
作物产量(kg)
300
500
概率
0.5
0.5
 
作物市场价格(元/kg)
6
10
概率
0.4
0.6
 

 

(1)设X表示在这块地上种植1季此作物的利润,求X的分布列;
(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元的概率.
当前题号:7 | 题型:解答题 | 难度:0.99
箱中装有4个白球和个黑球.规定取出一个白球得2分,取出一个黑球得1分,现从箱中任取3个球,假设每个球被取出的可能性都相等.记随机变量为取出的3个球所得分数之和.
(1)若,求的值;
(2)当时,求的分布列.
当前题号:8 | 题型:解答题 | 难度:0.99
某城市为鼓励人们乘坐地铁出行,地铁公司决定按照乘客经过地铁站的数量实施分段优惠政策,不超过30站的地铁票价如下表:
乘坐站数



票价(元)
3
6
9
 
现有甲、乙两位乘客同时从起点乘坐同一辆地铁,已知他们乘坐地铁都不超过30站,甲、乙乘坐不超过10站的概率分别为;甲、乙乘坐超过20站的概率分别为
(Ⅰ)求甲、乙两人付费相同的概率;
(Ⅱ)设甲、乙两人所付费用之和为随机变量,求的分布列和数学期望.
当前题号:9 | 题型:解答题 | 难度:0.99
《中国诗词大会》是由CCTV-10自主研发的一档大型文化益智节目,以“赏中华诗词,寻文化基因品生活之美”为宗旨,带动全民重温经典、从古人的智慧和情怀中汲取营养、涵养心灵,节目广受好评还因为其颇具新意的比赛规则:每场比赛,106位挑战者全部参赛,分为单人追逐赛和擂主争霸赛两部分单人追逐赛的最终优胜者作为攻擂者与守擂擂主进行比拼,竞争该场比赛的擂主,擂主争霸赛以抢答的形式展开,共九道题,抢到并回答正确者得一分,答错则对方得一分,先得五分者获胜,成为本场擂主,比赛结束已知某场擂主争霸赛中,攻擂者与守擂擂主都参与每一次抢题且两人抢到每道题的概率都是,攻擂者与守擂擂主正确回答每道题的概率分别为,,且两人各道题是否回答正确均相互独立.
(1)比赛开始,求攻擂者率先得一分的概率;
(2)比赛进行中,攻擂者暂时以领先,设两人共继续抢答了道题比赛结束,求随机变量的分布列和数学期望.
当前题号:10 | 题型:解答题 | 难度:0.99