- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 离散型随机变量及其分布列
- 随机变量
- 离散型随机变量
- 离散型随机变量的分布列
- 二项分布及其应用
- 离散型随机变量的均值与方差
- 正态分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
据报道,全国很多省市将英语考试作为高考改革的重点,一时间“英语考试该如何改革”引起广泛关注,为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3600人进行调查,就“是否取消英语听力”问题进行了问卷调查统计,结果如下表:
(1)已知在全体样本中随机抽取
人,抽到持“应该保留”态度的人的概率为
,现用分层抽样的方法在所有参与调查的人中抽取
人进行问卷访谈,问应在持“无所谓”态度的人中抽取多少人?
(2)在持“应该保留”态度的人中,用分层抽样的方法抽取
人,再平均分成两组进行深入交流,求第一组中在校学生人数
的分布列和数学期望.
态度 调查人群 | 应该取消 | 应该保留 | 无所谓 |
在校学生 | 2100人 | 120人 | ![]() |
社会人士 | 600人 | ![]() | ![]() |
(1)已知在全体样本中随机抽取



(2)在持“应该保留”态度的人中,用分层抽样的方法抽取


2019年9月28日中国女排在世界杯第10轮比赛中,以
的比分战胜塞尔维亚女排,从而在本次女排世界杯中取得10连胜,提前一轮卫冕世界杯冠军.世界杯是单循环赛制,中国女排要和11个对手轮番对决,比赛中以
或
取胜的球队积3分,负队积0分,而在比赛中以
取胜的球队积2分,负队积1分,通过最终的总积分来决定最后的名次归属.
下某网站上整理了2003年以来中国队与世界女排强队的50场比赛胜负情况如下表.

(1)现从中国队与美国女排及俄罗斯女排的比赛视频中各调取1场比赛进行观看,求至少有一场是中国队以3:0获胜的比赛的概率;
(2)若根据表中数据进行推断:
①求中国队与巴西队比赛获得的积分期望;
②预测中国队、巴西、俄罗斯、美国这四支强队进行单循环赛时中国队获得总积分的期望.




下某网站上整理了2003年以来中国队与世界女排强队的50场比赛胜负情况如下表.

(1)现从中国队与美国女排及俄罗斯女排的比赛视频中各调取1场比赛进行观看,求至少有一场是中国队以3:0获胜的比赛的概率;
(2)若根据表中数据进行推断:
①求中国队与巴西队比赛获得的积分期望;
②预测中国队、巴西、俄罗斯、美国这四支强队进行单循环赛时中国队获得总积分的期望.
某射击小组有甲、乙、丙三名射手,已知甲击中目标的概率是
,甲、丙二人都没有击中目标的概率是
,乙、丙二人都击中目标的概率是
.甲乙丙是否击中目标相互独立.
(1)求乙、丙二人各自击中目标的概率;
(2)设乙、丙二人中击中目标的人数为X,求X的分布列和数学期望.



(1)求乙、丙二人各自击中目标的概率;
(2)设乙、丙二人中击中目标的人数为X,求X的分布列和数学期望.
某校高一年级模仿《中国诗词大会》节目举办学校诗词大会,进入正赛的条件为:电脑随机抽取10首古诗,参赛者能够正确背诵6首及以上的进入正赛,若学生甲参赛,他背诵每一首古诗的正确的概率均为
(1)求甲进入正赛的概率;
(2)若进入正赛,则采用积分淘汰制,规则是:电脑随机抽取4首古诗,每首古诗背诵正确加2分,错误减1分.由于难度增加,甲背诵每首古诗正确的概率为
,求甲在正赛中积分
的概率分布列及数学期望.

(1)求甲进入正赛的概率;
(2)若进入正赛,则采用积分淘汰制,规则是:电脑随机抽取4首古诗,每首古诗背诵正确加2分,错误减1分.由于难度增加,甲背诵每首古诗正确的概率为


己知甲盒内有大小相同的1个红球和2个黑球,乙盒内有大小相同的2个红球和3个黑球.现从甲、乙两个盒内各任取2个球.
(I)求取出的4个球中恰有1个红球的概率;
(II)设ξ为取出的4个球中红球的个数,求ξ的分布列和数学期望.
(I)求取出的4个球中恰有1个红球的概率;
(II)设ξ为取出的4个球中红球的个数,求ξ的分布列和数学期望.
随着经济的发展,个人收入的提高,自2019年1月1日起,个人所得税起征点和税率作了调整.调整如下:纳税人的工资、薪金所得,以每月全部收入额减除5000元后的余额为应纳税所得额.依照个人所得税税率表,调整前后的计算方法如下表:

(1)假如小明某月的工资、薪金等税前收入为7500元,请你帮小明算一下调整后小明的实际收入比调整前增加了多少?
(2)某税务部门在小明所在公司利用分层抽样方法抽取某月100个不同层次员工的税前收入,并制成下面的频数分布表:

先从收入在
及
的人群中按分层抽样抽取7人,再从中选3人作为新纳税法知识宣讲员,用随机变量
表示抽到作为宣讲员的收入在
元的人数,求
的分布列与数学期望.

(1)假如小明某月的工资、薪金等税前收入为7500元,请你帮小明算一下调整后小明的实际收入比调整前增加了多少?
(2)某税务部门在小明所在公司利用分层抽样方法抽取某月100个不同层次员工的税前收入,并制成下面的频数分布表:

先从收入在





东方商店欲购进某种食品(保质期两天),此商店每两天购进该食品一次(购进时,该食品为刚生产的).根据市场调查,该食品每份进价
元,售价
元,如果两天内无法售出,则食品过期作废,且两天内的销售情况互不影响,为了了解市场的需求情况,现统计该产品在本地区
天的销售量如下表:

(视样本频率为概率)
(1)根据该产品
天的销售量统计表,记两天中一共销售该食品份数为
,求
的分布列与期望
(2)以两天内该产品所获得的利润期望为决策依据,东方商店一次性购进
或
份,哪一种得到的利润更大?




(视样本频率为概率)
(1)根据该产品



(2)以两天内该产品所获得的利润期望为决策依据,东方商店一次性购进


一工厂生产的100个产品中有90个一等品,10个二等品,现从这批产品中抽取4个,则其中恰好有一个二等品的概率为( )
A.![]() | B.![]() | C.![]() | D.![]() |