- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 基本事件
- 判断事件是否为基本事件
- 写出基本事件
- 古典概型的特征
- 整数值随机数
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某商场举行购物抽奖活动,抽奖箱中放有编号分别为
的五个小球.小球除编号不同外,其余均相同.活动规则如下:从抽奖箱中随机抽取一球,若抽到的小球编号为
,则获得奖金
元;若抽到的小球编号为偶数,则获得奖金
元;若抽到其余编号的小球,则不中奖.现某顾客依次有放回的抽奖两次.
(1)求该顾客两次抽奖后都没有中奖的概率;
(2)求该顾客两次抽奖后获得奖金之和为
元的概率.




(1)求该顾客两次抽奖后都没有中奖的概率;
(2)求该顾客两次抽奖后获得奖金之和为

同时投掷两枚大小完全相同的骰子,用
表示出现的结果,其中x,y分别为两枚骰子向上的点数,则该事件的所有结果种数为( )

A.11 | B.22 | C.36 | D.66 |
甲在微信群中发布6元“拼手气”红包一个,被乙、丙、丁三人抢完.若三人均领到整数元,且每人至少领到1元,则乙获得“最佳手气”(即乙领取的钱数不少于其他任何人)的概率是( )
A.![]() | B.![]() | C.![]() | D.![]() |
有4张卡片,上面分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的所有基本事件数为( )
A.2 | B.3 |
C.4 | D.6 |
在两个袋子里分别装着写有
、
、
、
、
、
这六个数字的
张卡片,从每个袋中各任取一张卡片,则“两张卡片上数字之和等于
”这一事件包含的基本事件个数为______.








某人做试验,从一个装有标号为1,2,3,4的小球的盒子中,无放回地取两个小球,每次取一个,先取的小球的标号为x,后取的小球的标号为y,这样构成有序实数对(x,y).
(1)写出这个试验的所有结果;
(2)写出“第一次取出的小球上的标号为2”这一事件.
(1)写出这个试验的所有结果;
(2)写出“第一次取出的小球上的标号为2”这一事件.
汉字是世界上最古老的文字之一,字形结构体现人类追求均衡对称、和谐稳定的天性.如图,三个汉字可以看成是轴对称图形.

小敏和小慧利用“土”“口”“木”三个汉字设计一个游戏,规则如下:将这三个汉字分别写在背面都相同的三张卡片上,背面朝上洗匀后抽出一张,放回洗匀后再抽出一张,若两次抽出的汉字能构成上下结构的汉字(如“土”“土”构成“圭”),小敏获胜,否则小慧获胜.你认为这个游戏对谁有利?

小敏和小慧利用“土”“口”“木”三个汉字设计一个游戏,规则如下:将这三个汉字分别写在背面都相同的三张卡片上,背面朝上洗匀后抽出一张,放回洗匀后再抽出一张,若两次抽出的汉字能构成上下结构的汉字(如“土”“土”构成“圭”),小敏获胜,否则小慧获胜.你认为这个游戏对谁有利?
田忌和齐王赛马是历史上有名的故事,设齐王的三匹马分别为
,田忌的三匹马分别为
,三匹马各比赛一次,胜两场者获胜.若这六匹马的优劣程度可以用以下不等式表示:
.
(1)正常情况下,求田忌获胜的概率;
(2)为了得到更大的获胜机会,田忌打探到齐王第一场必出上等马
,于是田忌采用了最恰当的应对策略,求这时田忌获胜的概率.



(1)正常情况下,求田忌获胜的概率;
(2)为了得到更大的获胜机会,田忌打探到齐王第一场必出上等马

小王同学有三支款式相同、颜色不同的圆珠笔,每支圆珠笔都有一个与之同颜色的笔帽,平时小王都将笔和笔帽套在一起,但偶尔会将笔和笔帽搭配成不同色.将笔和笔帽随机套在一起,请问小王将两支笔和笔帽的颜色混搭的概率是( )
A.![]() | B.![]() | C.![]() | D.![]() |