- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 互斥事件与对立事件关系的辨析
- 确定所给事件的对立关系
- 写出某事件的对立事件
- + 利用对立事件的概率公式求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
现代社会的竞争,是人才的竞争,各国、各地区、各单位都在广纳贤人,以更好更快的促进国家、地区、单位的发展.某单位进行人才选拔考核,该考核共有三轮,每轮都只设置一个项目问题,能正确解决项目问题者才能进入下一轮考核;不能正确解决者即被淘汰.三轮的项目问题都正确解决者即被录用.已知A选手能正确解决第一、二、三轮的项目问题的概率分别为
、
、
,且各项目问题能否正确解决互不影响.
(1)求A选手被淘汰的概率;
(2)设该选手在选拔中正确解决项目问题的个数为
,求
的分布列与数学期望.



(1)求A选手被淘汰的概率;
(2)设该选手在选拔中正确解决项目问题的个数为


中国篮球职业联赛(
)中,某男篮球运动员在最近几次参加的比赛中的得分情况如下表:
记该运动员在一次投篮中,投中两分球为事件
,投中三分球为事件
,没投中为事件
,用频率估计概率的方法,得到的下述结论中,正确的是( )

投篮次数 | 投中两分球的次数 | 投中三分球的次数 |
![]() | ![]() | ![]() |
记该运动员在一次投篮中,投中两分球为事件



A.![]() | B.![]() | C.![]() | D.![]() |
从一箱产品中随机地抽取一件,设事件A=“抽到一等品”,事件B = “抽到二等品”,事件C =“抽到三等品”,且已知 P(A)= 0.65 ,P(B)=0.2 ,P(C)=0.1.则事件“抽到的不是一等品”的概率为( )
A.0.65 | B.0.35 | C.0.3 | D.0.005 |
甲,乙二人进行乒乓球比赛,比赛采用三局两胜制,即先获得两局胜利的一方为获胜方,这时比赛结束.已知每局比赛甲胜乙的概率是
,假设每局比赛结果相互独立.
(1)求在一场比赛中甲获得比赛胜利的概率;
(2)设随机变量
为甲在一场比赛中获胜的局数,求
.

(1)求在一场比赛中甲获得比赛胜利的概率;
(2)设随机变量


在社会主义新农村建设中,某市决定在一个乡镇投资农产品加工、绿色蔬菜种植和水果种植三个项目,据预测,三个项目成功的概率分别为
,
,
,且三个项目是否成功互相独立.则至少有一个项目成功的概率为_______ .



某商场举行优惠促销,顾客仅可以从以下两种优惠方案中选择一种:方案一:每满200元减50元;方案二:每满200元可抽奖一次.具体规则是依次从装有3个红球、1个白球的甲箱,装2个红球、2个白球的乙箱,以及装有1个红球、3个白球的丙箱中各随机摸出1个球,所得结果和享受的优惠如下表:(注:所有小球仅颜色有区别)

(1)若两个顾客都选择方案二,各抽奖一次,求至少一个人获得优惠的概率;
(2)若某顾客选择方案二,请分别计算该顾客获得半价优惠的概率、7折优惠的概率以及8折优惠的概率;
(3)若小明的购物金额为320元,你觉得小明应该选取哪个方案,为什么?

(1)若两个顾客都选择方案二,各抽奖一次,求至少一个人获得优惠的概率;
(2)若某顾客选择方案二,请分别计算该顾客获得半价优惠的概率、7折优惠的概率以及8折优惠的概率;
(3)若小明的购物金额为320元,你觉得小明应该选取哪个方案,为什么?
设每门高射炮命中飞机的概率为
,且每一门高射炮是否命中飞机是独立的,若有一敌机来犯,则需要______ 门高射炮射击,才能以至少
的概率命中它.


甲、乙两人同时参加一个外贸公司的招聘,招聘分笔试与面试两部分,先笔试后面试.甲笔试与面试通过的概率分别为0.8,0.5,乙笔试与面试通过的概率分别为0.8,0.4,且笔试通过了才能进入面试,面试通过则直接招聘录用,两人笔试与面试相互独立互不影响.
(1)求这两人至少有一人通过笔试的概率;
(2)求这两人笔试都通过却都未被录用的概率;
(3)记这两人中最终被录用的人数为X,求X的分布列和数学期望.
(1)求这两人至少有一人通过笔试的概率;
(2)求这两人笔试都通过却都未被录用的概率;
(3)记这两人中最终被录用的人数为X,求X的分布列和数学期望.