- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机现象
- 频率与概率
- 生活中的概率
- 事件的关系与运算
- + 互斥事件
- 判断所给事件是否是互斥关系
- 互斥事件的概率加法公式
- 利用互斥事件的概率公式求概率
- 对立事件
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
一个口袋中有若干大小相同的红球、黄球和蓝球,从中摸出一只球.摸出红球的概率为0.48,摸出黄球的概率为0.35,则摸出蓝球的概率为_____.
从一批羽毛球产品中任取一个,其质量小于4.8 g的概率为0.3,质量不超过4.85 g的概率为0.32,那么质量在[4.8,4.85]范围内的概率是( )
A.0.62 | B.0.38 |
C.0.02 | D.0.68 |
如图所示,靶子由一个中心圆面Ⅰ和两个同心圆环Ⅱ、Ⅲ构成,射手命中Ⅰ、Ⅱ、Ⅲ的概率分别为0.15,0.20,0.45,则不中靶的概率是________ .

围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为
,从中取出2粒都是白子的概率是
.则从中任意取出2粒恰好是同一色的概率是


A.![]() | B.![]() | C.![]() | D.1 |
在10000张有奖明信片中,设有一等奖5个,二等奖10个,三等奖l00个,从中随意买l张.
(1)P(获一等奖)=______ ,P(获二等奖)=______ ,P(获三等奖)= ______ .
(2)P(中奖)=______ ,P(不中奖)=______ .
(1)P(获一等奖)=
(2)P(中奖)=
某次知识竞赛规则如下:主办方预设3个问题,选手能答对这3个问题,即可晋级下一轮,假设某选手回答正确的个数为0,1,2的概率分别是0.1,0.2,0.3,则该选手晋级下一轮的概率为__________.
在一次随机试验中,三个事件
的概率分别是
,则下列说法正确的个数是()
①
与
是互斥事件,也是对立事件;②
是必然事件;③
;④
.


①





A.0 | B.1 | C.2 | D.3 |
从装有3个红球和3个白球的口袋里任取3个球,那么互斥而不对立的两个事件是( )
A.至少2个白球,都是红球 | B.至少1个白球,至少1个红球 |
C.至少2个白球,至多1个白球 | D.恰好1个白球,恰好2个红球 |
甲、乙、丙三名学生一起参加某高校组织的自主招生考试,考试分笔试和面试两部分,笔试和面试均合格者将成为该高校的预录取生(可在高考中加分录取),两次考试过程相互独立,根据甲、乙、丙三名学生的平均成绩分析,甲、乙、丙3名学生能通过笔试的概率分别是0.6,0.5,0.4,能通过面试的概率分别是0.6,0.6,0.75.
(1)求甲、乙、丙三名学生中恰有一人通过笔试的概率;
(2)求经过两次考试后,至少有一人被该高校预录取的概率.
(1)求甲、乙、丙三名学生中恰有一人通过笔试的概率;
(2)求经过两次考试后,至少有一人被该高校预录取的概率.