- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机现象
- + 频率与概率
- 计算频率
- 辨析概率与频率的关系
- 用频率估计概率
- 生活中的概率
- 事件的关系与运算
- 互斥事件
- 对立事件
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
小明在抛掷图钉时,在200次至300次抛掷中钉尖触地的频率约在35%~35.4%之间,那么再抛掷100次,钉尖触地次数的取值范围是_____.
将一枚质地均匀的硬币连掷
次,设事件
“恰好两次正面朝上”,
(1)直接计算事件
的概率;
(2)利用计算器或计算机模拟试验80次,计算事件
发生的频率.


(1)直接计算事件

(2)利用计算器或计算机模拟试验80次,计算事件

下表是甲、乙两名射击运动员在参赛前的训练中击中10环以上的次数统计,根据表格中的数据回答以下问题:
(1)分别计算出两位运动员击中10环以上的频率;
(2)根据(l)中的计算结果预测两位运动员在比赛时击中10环以上的概率.
射击次数![]() | 10 | 20 | 50 | 100 | 200 | 500 |
甲击中10环以上的次数 | 9 | 17 | 44 | 92 | 179 | 450 |
甲击中10环以上的频率 | | | | | | |
射击次数![]() | 10 | 20 | 50 | 100 | 200 | 500 |
乙击中10环以上的次数 | 8 | 19 | 44 | 93 | 177 | 453 |
乙击中10环以上的频率 | | | | | | |
(1)分别计算出两位运动员击中10环以上的频率;
(2)根据(l)中的计算结果预测两位运动员在比赛时击中10环以上的概率.
(1)掷两枚质地均匀的骰子,计算点数和为7的概率;
(2)利用随机模拟的方法,试验120次,计算出现点数和为7的频率;
(3)所得频率与概率相差大吗?为什么会有这种差异?
(2)利用随机模拟的方法,试验120次,计算出现点数和为7的频率;
(3)所得频率与概率相差大吗?为什么会有这种差异?
从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表如下,从该校随机选取一名学生,则估计这名学生该周课外阅读时间少于12小时的概率为__________.
组号 | 分组 | 频数 |
1 | [0,2) | 6 |
2 | [2,4) | 8 |
3 | [4,6) | 17 |
4 | [6,8) | 22 |
5 | [8,10) | 25 |
6 | [10,12) | 12 |
7 | [12,14) | 6 |
8 | [14,16) | 2 |
9 | [16,18) | 2 |
合计 | 100 |
下面是有关部门对某乒乓球生产企业某批次乒乓球的抽样检测结果:
(1)计算表中优等品的各个频率.
(2)从这批乒乓球中任取一个乒乓球,质量检测为优等品的概率约是多少?
抽取球数目 | 优等品数目 | 优等品频率 |
50 | 45 | |
100 | 92 | |
200 | 194 | |
500 | 470 | |
1000 | 954 | |
2000 | 1902 | |
(1)计算表中优等品的各个频率.
(2)从这批乒乓球中任取一个乒乓球,质量检测为优等品的概率约是多少?
已知某厂的产品合格率为0.8,现抽出10件产品检查,则下列说法正确的是( )
A.合格产品少于8件 | B.合格产品多于8件 |
C.合格产品正好是8件 | D.合格产品可能是8件 |
用木块制作的一个四面体,四个面上分别标记1,2,3,4.重复抛掷这个四面体100次,记录每个面落在桌面上的次数(如下表).如果再抛掷一次,请估计标记3的面落在桌面上的概率.
四面体的面 | 1 | 2 | 3 | 4 |
频数 | 22 | 18 | 21 | 39 |
一个游戏包含两个随机事件A和B,规定事件A发生则甲获胜,事件B发生则乙获胜.判断游戏是否公平的标准是事件A和B发生的概率是否相等.
在游戏过程中甲发现:玩了10次时,双方各胜5次;但玩到1000次时,自己才胜300次,而乙却胜了700次.据此,甲认为游戏不公平,但乙认为游戏是公平的.你更支持谁的结论?为什么?
在游戏过程中甲发现:玩了10次时,双方各胜5次;但玩到1000次时,自己才胜300次,而乙却胜了700次.据此,甲认为游戏不公平,但乙认为游戏是公平的.你更支持谁的结论?为什么?