- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机现象
- + 频率与概率
- 计算频率
- 辨析概率与频率的关系
- 用频率估计概率
- 生活中的概率
- 事件的关系与运算
- 互斥事件
- 对立事件
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
对以下命题:
①随机事件的概率与频率一样,与试验重复的次数有关;
②抛掷两枚均匀硬币一次,出现一正一反的概率是
;
③若一种彩票买一张中奖的概率是
,则买这种彩票一千张就会中奖;
④“姚明投篮一次,求投中的概率”属于古典概型概率问题.
其中正确的个数是( )
①随机事件的概率与频率一样,与试验重复的次数有关;
②抛掷两枚均匀硬币一次,出现一正一反的概率是

③若一种彩票买一张中奖的概率是

④“姚明投篮一次,求投中的概率”属于古典概型概率问题.
其中正确的个数是( )
A.0 | B.1 | C.2 | D.3 |
今年由于猪肉涨价太多,更多市民选择购买鸡肉、鸭肉、鱼肉等其它肉类.某天在市场中随机抽出100名市民调查,其中不买猪肉的人有30位,买了肉的人有90位,买猪肉且买其它肉的人共30位,则这一天该市只买猪肉的人数与全市人数的比值的估计值为____.
某汽车美容公司为吸引顾客,推出优惠活动:对首次消费的顾客,按
/次收费,并注册成为会员,对会员逐次消费给予相应优惠,标准如下:
该公司注册的会员中没有消费超过
次的,从注册的会员中,随机抽取了100位进行统计,得到统计数据如下:
假设汽车美容一次,公司成本为
元,根据所给数据,解答下列问题:
(1)某会员仅消费两次,求这两次消费中,公司获得的平均利润;
(2)以事件发生的频率作为相应事件发生的概率,设该公司为一位会员服务的平均利润为
元,求
的分布列和数学期望
.

消费次第 | 第![]() | 第![]() | 第![]() | 第![]() | ![]() ![]() |
收费比率 | ![]() | ![]() | ![]() | ![]() | ![]() |
该公司注册的会员中没有消费超过

消费次数 | ![]() | ![]() | ![]() | ![]() | ![]() |
人数 | ![]() | ![]() | ![]() | ![]() | ![]() |
假设汽车美容一次,公司成本为

(1)某会员仅消费两次,求这两次消费中,公司获得的平均利润;
(2)以事件发生的频率作为相应事件发生的概率,设该公司为一位会员服务的平均利润为



某公司计划购买1台机器,且该种机器使用三年后即被淘汰.在购进机器时,可以一次性额外购买几次维修服务,每次维修服务费用200元,另外实际维修一次还需向维修人员支付小费,小费每次50元.在机器使用期间,如果维修次数超过购机时购买的维修服务次数,则每维修一次需支付维修服务费用500元,无需支付小费.现需决策在购买机器时应同时一次性购买几次维修服务,为此搜集并整理了100台这种机器在三年使用期间的维修次数,得如下统计表:
记
表示1台机器在三年使用期内的维修次数,
表示1台机器在维修上所需的费用(单位:元),
表示购机的同时购买的维修服务次数.
(1)若
,求
关于
的函数解析式;
(2)若要求“维修次数不大于
”的频率不小于0.8,求
的最小值;
(3)假设这100台机器在购机的同时每台都购买10次维修服务或每台都购买11次维修服务,分别计算这100台机器在维修上所需费用的平均数,以此作为决策依据,判断购买1台机器的同时应购买10次还是11次维修服务?.
维修次数 | 8 | 9 | 10 | 11 | 12 |
频数 | 10 | 20 | 30 | 30 | 10 |
记



(1)若



(2)若要求“维修次数不大于


(3)假设这100台机器在购机的同时每台都购买10次维修服务或每台都购买11次维修服务,分别计算这100台机器在维修上所需费用的平均数,以此作为决策依据,判断购买1台机器的同时应购买10次还是11次维修服务?.