- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机现象
- + 频率与概率
- 计算频率
- 辨析概率与频率的关系
- 用频率估计概率
- 生活中的概率
- 事件的关系与运算
- 互斥事件
- 对立事件
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
判断下列说法是否正确,并说明理由:
(1)抛掷一枚硬币正面朝上的概率为0.5,则抛掷两次硬币,一定是一次正面朝上,一次反面朝上;
(2)抛掷一枚质地均匀的硬币10次,结果是4次正面朝上,所以事件“正面朝上”的概率为0.4;
(3)当试验次数很大时,随机事件发生的频率接近其概率;
(4)在一次试验中,随机事件可能发生也可能不发生,所以事件发生和不发生的概率各是0.5.
(1)抛掷一枚硬币正面朝上的概率为0.5,则抛掷两次硬币,一定是一次正面朝上,一次反面朝上;
(2)抛掷一枚质地均匀的硬币10次,结果是4次正面朝上,所以事件“正面朝上”的概率为0.4;
(3)当试验次数很大时,随机事件发生的频率接近其概率;
(4)在一次试验中,随机事件可能发生也可能不发生,所以事件发生和不发生的概率各是0.5.
在一个袋子中放6个白球,4个红球,揺匀后随机摸球3次,采用放回和不放回两种方式摸球.设事件
“第i次摸到红球”,i=1,2,3.
(1)在两种摸球方式下分别猜想事件
发生的概率的大小关系;
(2)重复做10次试验,求事件
发生的频率,并填入下表.
(3)在两种摸球方式下,第3次摸到红球的频率
差别大吗?在不放回摸球方式下,事件
的频率差别大吗?请说明原因.

(1)在两种摸球方式下分别猜想事件

(2)重复做10次试验,求事件

| 放回摸球 | 不放回摸球 |
![]() | | |
![]() | | |
![]() | | |
(3)在两种摸球方式下,第3次摸到红球的频率


为了研究某种油菜籽的发芽率,科研人员在相同条件下做了10批试验,油菜籽的发芽试验相关数据如下表:
问题
(1)如何计算每批试验中油菜籽发芽的频率?
(2)由各批油菜籽发芽的频率,可以得到频率具有怎样的特征?
(3)如何确定该油菜籽发芽的概率?
批次 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
每批粒数 | 2 | 5 | 10 | 70 | 130 | 700 | 1500 | 2000 | 3000 | 5000 |
发芽的粒数 | 2 | 4 | 9 | 60 | 116 | 637 | 1370 | 1786 | 2709 | 4490 |
问题
(1)如何计算每批试验中油菜籽发芽的频率?
(2)由各批油菜籽发芽的频率,可以得到频率具有怎样的特征?
(3)如何确定该油菜籽发芽的概率?
为了估计水库中鱼的尾数,可以使用以下的方法:先从水库中捕出一定数量的鱼,例如2000尾,给每尾鱼作上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中其余的鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾,查看其中有记号的鱼,设有40尾.试根据上述数据,估计水库中鱼的尾数.
一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20000辆汽车的信息,时间是从某年的5月1日到下一年的4月30日,发现共有600辆汽车的挡风玻璃破碎,则一辆汽车在一年内挡风玻璃破碎的概率近似为_______.
在一次掷硬币试验中,掷30000次,其中有14984次正面朝上,则出现正面朝上的频率近似是_____,据此,掷一枚硬币,正面朝上的概率是_________.
某单位招聘员工,有200名应聘者参加笔试,随机抽查了其中20名应聘者笔试试卷,统计他们的成绩如下表:
若按笔试成绩择优录取40名参加面试,由此可预测参加面试的分数线为 分
分数段 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
人数 | 1 | 3 | 6 | 6 | 2 | 1 | 1 |
若按笔试成绩择优录取40名参加面试,由此可预测参加面试的分数线为 分
实践中常采用“捉-放-捉”的方法估计一个鱼塘中鱼的数量。如从这个鱼塘中随机捕捞出100条鱼,将这100条鱼分别作一记号后再放回鱼塘,数天后再从鱼塘中随机捕捞出108条鱼,其中有记号的鱼有9条,从而可以估计鱼塘中的鱼有_________条