- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 随机事件的概率
- 随机现象
- 频率与概率
- 生活中的概率
- 事件的关系与运算
- 互斥事件
- 对立事件
- 古典概型
- 几何概型
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.求顾客抽奖1次能获奖的概率.
下面的三个游戏都是在袋子中装球,然后从袋子中不放同地取球,分别计算三个游戏中甲获胜的概率,你认为哪个游戏是公平的?
| 游戏1 | 游戏2 | 游戏3 |
袋子中球的数量和颜色 | 1个红球和1个白球 | 2个红球和2个白球 | 3个红球和1个白球 |
取球规则 | 取1个球 | 依次取出2个球 | 依次取出2个球 |
获胜规则 | 取到红球→甲胜 | 两个球同色→甲胜 | 两个球同色→甲胜 |
取到白球→乙胜 | 两个球不同色→乙胜 | 两个球不同色→乙胜 |
某射击运动员平时训练成绩的统计结果如下:
如果这名运动员只射击一次,以频率作为概率,求下列事件的概率;
(1)命中10环;
(2)命中的环数大于8环;
(3)命中的环数小于9环;
(4)命中的环数不超过5环.
命中环数 | 6 | 7 | 8 | 9 | 10 |
频率 | 0.1 | 0.15 | 0.25 | 0.3 | 0.2 |
如果这名运动员只射击一次,以频率作为概率,求下列事件的概率;
(1)命中10环;
(2)命中的环数大于8环;
(3)命中的环数小于9环;
(4)命中的环数不超过5环.
判断下列说法是否正确,若错误,请举出反例
(1)互斥的事件一定是对立事件,对立事件不一定是互斥事件;
(2)互斥的事件不一定是对立事件,对立事件一定是互斥事件;
(3)事件
与事件B中至少有一个发生的概率一定比
与B中恰有一个发生的概率大;
(4)事件
与事件B同时发生的概率一定比
与B中恰有一个发生的概率小.
(1)互斥的事件一定是对立事件,对立事件不一定是互斥事件;
(2)互斥的事件不一定是对立事件,对立事件一定是互斥事件;
(3)事件


(4)事件


如图是某班级50名学生订阅数学、语文、英语学习资料的情况,其中A表示订阅数学学习资料的学生,B表示订阅语文学习资料的学生,C表示订阅英语学习资料的学生

(1)从这个班任意选择一名学生,用自然语言描述1,4,5,8各区域所代表的事件;
(2)用A,B,C表示下列事件:
①恰好订阅一种学习资料;
②没有订阅任何学习资料.

(1)从这个班任意选择一名学生,用自然语言描述1,4,5,8各区域所代表的事件;
(2)用A,B,C表示下列事件:
①恰好订阅一种学习资料;
②没有订阅任何学习资料.
抛掷两枚质地均匀的硬币,设事件A=“第一枚硬币正面朝上”,事件B=“第二枚硬币反面朝上”.
(1)写出样本空间,并列举A和B包含的样本点;
(2)下列结论中正确的是( ).
(1)写出样本空间,并列举A和B包含的样本点;
(2)下列结论中正确的是( ).
A.A与B互为对立事件 | B.A与B互斥 | C.A与B相等 | D.P(A)=P(B) |
生产某种产品需要2道工序,设事件A=“第一道工序加工合格”,事件B=“第二道工序加工合格”,用A,B表示下列事件:C=“产品合格”,D=“产品不合格”
某品牌计算机售后保修期为1年,根据大量的维修记录资料,这种品牌的计算机在使用一年内需要维修1次的占15%,需要维修2次的占6%,需要维修3次的占4%.
(1)某人购买了一台这个品牌的计算机,设
=“一年内需要维修k次”,k=0,1,2,3,请填写下表:
事件
是否满足两两互斥?是否满足等可能性?
(2)求下列事件的概率:
①A=“在1年内需要维修”;
②B=“在1年内不需要维修”;
③C=“在1年内维修不超过1次”.
(1)某人购买了一台这个品牌的计算机,设

事件 | ![]() | ![]() | ![]() | ![]() |
概率 | | | | |
事件

(2)求下列事件的概率:
①A=“在1年内需要维修”;
②B=“在1年内不需要维修”;
③C=“在1年内维修不超过1次”.
从1-20这20个整数中随机选择一个数,设事件A表示选到的数能被2整除,事件B表示选到的数能被3整除,求下列事件的概率;
(1)这个数既能被2整除也能被3整除;
(2)这个数能被2整除或能被3整除;
(3)这个数既不能被2整除也不能被3整除.
(1)这个数既能被2整除也能被3整除;
(2)这个数能被2整除或能被3整除;
(3)这个数既不能被2整除也不能被3整除.