- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- 统计案例
- 计数原理
- + 概率
- 随机事件的概率
- 古典概型
- 几何概型
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在开展学习强国的活动中,某校高三数学教师成立了党员和非党员两个学习组,其中党员学习组有4名男教师、1名女教师,非党员学习组有2名男教师、2名女教师,高三数学组计划从两个学习组中随机各选2名教师参加学校的挑战答题比赛.
(1)求选出的4名选手中恰好有一名女教师的选派方法数;
(2)记X为选出的4名选手中女教师的人数,求X的概率分布和数学期望.
(1)求选出的4名选手中恰好有一名女教师的选派方法数;
(2)记X为选出的4名选手中女教师的人数,求X的概率分布和数学期望.
甲乙两人报名参加由某网络科技公司举办的“技能闯关”双人电子竞技比赛,比赛规则如下:每一轮“闯关”结果都采取计分制,若在一轮闯关中,一人过关另一人未过关,过关者得1分,未过关得
分;若两人都过关或都未过关则两人均得0分.甲、乙过关的概率分别为
和
,在一轮闯关中,甲的得分记为
.
(1)求
的分布列;
(2)为了增加趣味性,系统给每位报名者基础分3分,并且规定出现一方比另一方多过关三轮者获胜,此二人比赛结束.
表示“甲的累积得分为
时,最终认为甲获胜”的概率,则
,其中
,
,
,令
.证明:点
的中点横坐标为
;
(3)在第(2)问的条件下求
,并尝试解释游戏规则的公平性.




(1)求

(2)为了增加趣味性,系统给每位报名者基础分3分,并且规定出现一方比另一方多过关三轮者获胜,此二人比赛结束.









(3)在第(2)问的条件下求

如图,矩形
内的黑色图形来自中国清朝时期的天平的铜砝码,其中
,
,
,
是线段
的两个三等分点,
,
是线段
的两个三等分点(图中圆弧近似地看作半圆).在矩形
内随机取一点,则此点取自黑色部分的概率是( )












A.![]() | B.![]() | C.![]() | D.![]() |
已知某线路公交车从6:30首发,每5分钟一班,甲、乙两同学都从起点站坐车去学校,若甲每天到起点站的时间是在6:30~7:00任意时刻随机到达,乙每天到起点站的时间是在6:45~7:15任意时刻随机到达,那么甲、乙两人搭乘同一辆公交车的概率是( )
A.![]() | B.![]() | C.![]() | D.![]() |
在平面直角坐标系xOy中,D是满足条件
的点构成的区域,E为到原点距离不大于2的点构成的区域,向D区域中随意投入一个点,落入E区域的概率为( )

A.![]() | B.![]() | C.![]() | D.![]() |
云南北辰中学五四青年节在辰星堂上演了一个数学性节目,演员将一只鸽子用长为2米的绳子固定在一个棱长为4米的铁笼上顶中心位置(鸽子的飞行半径为2米),然后再将一只昆虫放入笼中,求鸽子能捉到昆虫的概率( )
A.![]() | B.![]() | C.![]() | D.![]() |