- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- 统计案例
- 计数原理
- + 概率
- 随机事件的概率
- 古典概型
- 几何概型
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某种彩中奖的概率为
.若购买该种彩票10000张,则下列说法正确的是( )

A.一定有1张中奖 | B.一定有3张中奖 |
C.可能0张中奖 | D.不可能3张中奖 |
为降低汽车尾气的排放量,某厂生产甲乙两种不同型号的节排器,分别从甲乙两种节排器中各自抽取100件进行性能质量评估检测,综合得分情况的频率分布直方图如图所示.

节排器等级及利润如表格表示,其中
(1)若从这100件甲型号节排器按节排器等级分层抽样的方法抽取10件,再从这10件节排器中随机抽取3件,求至少有2件一级品的概率;
(2)视频率分布直方图中的频率为概率,用样本估计总体,则
①若从乙型号节排器中随机抽取3件,求二级品数
的分布列及数学期望
;
②从长期来看,骰子哪种型号的节排器平均利润较大?

节排器等级及利润如表格表示,其中

综合得分![]() | 节排器等级 | 节排器利润率 |
![]() | 一级品 | ![]() |
![]() | 二级品 | ![]() |
![]() | 三级品 | ![]() |
(1)若从这100件甲型号节排器按节排器等级分层抽样的方法抽取10件,再从这10件节排器中随机抽取3件,求至少有2件一级品的概率;
(2)视频率分布直方图中的频率为概率,用样本估计总体,则
①若从乙型号节排器中随机抽取3件,求二级品数


②从长期来看,骰子哪种型号的节排器平均利润较大?
“
”自动取款机设定: 一张银行卡一天最多允许有三次输人错误,若第四次再错则自动将卡吞收一天晚上,李四在“
”自动取款机上取款,一时想不起该卡的密码,但可以确定是五个常用密码中的一个,他第一次输入其中的一个密码是错误的,则他在确保不被吞卡的前提下取到款的概率是( )


A.![]() | B.![]() |
C.![]() | D.![]() |
某大学棋艺协会定期举办“以棋会友”的竞赛活动,分别包括“中国象棋”、“围棋”、“五子棋”、“国际象棋”四种比赛,每位协会会员必须参加其中的两种棋类比赛,且各队员之间参加比赛相互独立;已知甲同学必选“中国象棋”,不选“国际象棋”,乙同学从四种比赛中任选两种参与.
(1)求甲参加围棋比赛的概率;
(2)求甲、乙两人参与的两种比赛都不同的概率.
(1)求甲参加围棋比赛的概率;
(2)求甲、乙两人参与的两种比赛都不同的概率.
某人某天的工作是:驾车从
地出发,到
两地办事,最后返回
地,
三地之间各路段行驶时间及当天降水概率如表:
若在某路段遇到降水,则在该路段行驶的时间需延长1小时,现有如下两个方案:
方案甲:上午从
地出发到
地办事,然后到达
地,下午在
地办事后返回
地;
方案乙:上午从
地出发到
地办事,下午从
地出发到达
地,办事后返回
地.
(1)设此人8点从
地出发,在各地办事及午餐的累积时间为2小时.且采用方案甲,求他当日18点或18点之前能返回
地的概率;
(2)甲、乙两个方案中,哪个方案有利于办完事后能更早返回
地?




路段 | 正常行驶所需时间(小时) | 上午降水概率 | 下午降水概率 |
![]() | 2 | 0.3 | 0.6 |
![]() | 2 | 0.2 | 0.7 |
![]() | 3 | 0.3 | 0.9 |
若在某路段遇到降水,则在该路段行驶的时间需延长1小时,现有如下两个方案:
方案甲:上午从





方案乙:上午从





(1)设此人8点从


(2)甲、乙两个方案中,哪个方案有利于办完事后能更早返回

2019年12月以来,湖北武汉市发现多起病毒性肺炎病例,并迅速在全国范围内开始传播,专家组认为,本次病毒性肺炎病例的病原体初步判定为新型冠状病毒,该病毒存在人与人之间的传染,可以通过与患者的密切接触进行传染.我们把与患者有过密切接触的人群称为密切接触者,每位密切接触者被感染后即被称为患者.已知每位密切接触者在接触一个患者后被感染的概率为
,某位患者在隔离之前,每天有
位密切接触者,其中被感染的人数为
,假设每位密切接触者不再接触其他患者.
(1)求一天内被感染人数为
的概率
与
、
的关系式和
的数学期望;
(2)该病毒在进入人体后有14天的潜伏期,在这14天的潜伏期内患者无任何症状,为病毒传播的最佳时间,设每位患者在被感染后的第二天又有2位密切接触者,从某一名患者被感染,按第1天算起,第
天新增患者的数学期望记为
.
(i)求数列
的通项公式,并证明数列
为等比数列;
(ii)若戴口罩能降低每位密切接触者患病概率,降低后的患病概率
,当
取最大值时,计算此时
所对应的
值和此时
对应的
值,根据计算结果说明戴口罩的必要性.(取
)
(结果保留整数,参考数据:
)



(1)求一天内被感染人数为





(2)该病毒在进入人体后有14天的潜伏期,在这14天的潜伏期内患者无任何症状,为病毒传播的最佳时间,设每位患者在被感染后的第二天又有2位密切接触者,从某一名患者被感染,按第1天算起,第


(i)求数列


(ii)若戴口罩能降低每位密切接触者患病概率,降低后的患病概率







(结果保留整数,参考数据:

如图,
是圆
的内接正方形,将一颗豆子随机扔到圆
内,记事件
:“豆子落在正方形
内”,事件
:“豆子落在扇形
(阴影部分)内”,则条件概率
__.









某蔬菜批发商经销某种新鲜蔬菜(以下简称
蔬菜),购入价为200元/袋,并以300元/袋的价格售出,若前8小时内所购进的
蔬菜没有售完,则批发商将没售完的
蔬菜以150元/袋的价格低价处理完毕(根据经验,2小时内完全能够把
蔬菜低价处理完,且当天不再购进).该蔬菜批发商根据往年的销量,统计了100天
蔬菜在每天的前8小时内的销售量,制成如下频数分布条形图.

(1)若某天该蔬菜批发商共购入6袋
蔬菜,有4袋
蔬菜在前8小时内分别被4名顾客购买,剩下2袋在8小时后被另2名顾客购买.现从这6名顾客中随机选2人进行服务回访,则至少选中1人是以150元/袋的价格购买的概率是多少?
(2)以上述样本数据作为决策的依据.
(i)若今年
蔬菜上市的100天内,该蔬菜批发商坚持每天购进6袋
蔬菜,试估计该蔬菜批发商经销
蔬菜的总盈利值;
(ii)若明年该蔬菜批发商每天购进
蔬菜的袋数相同,试帮其设计明年的
蔬菜的进货方案,使其所获取的平均利润最大.






(1)若某天该蔬菜批发商共购入6袋


(2)以上述样本数据作为决策的依据.
(i)若今年



(ii)若明年该蔬菜批发商每天购进

