- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 全排列问题
- 元素(位置)有限制的排列问题
- 相邻问题的排列问题
- + 不相邻排列问题
- 其他排列模型
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
元旦晚会期间,高三二班的学生准备了6 个参赛节目,其中有 2 个舞蹈节目,2 个小品节目,2个歌曲节目,要求歌曲节目一定排在首尾,另外2个舞蹈节目一定要排在一起,则这 6 个节目的不同编排种数为
A.48 | B.36 | C.24 | D.12 |
4男3女站成一排,求满足下列条件的排法共有多少种?
任何两名女生都不相邻,有多少种排法?
男甲不在首位,男乙不在末位,有多少种排法?
男生甲、乙、丙顺序一定,有多少种排法?
男甲在男乙的左边
不一定相邻
有多少种不同的排法?






在学校国庆文艺晚会上,有三对教师夫妇参加表演节目,要求每人只能参加一个单项表演节目.按节目组节目编排要求,男教师的节目不能相邻,且夫妻教师的节目也不能相邻,则该6名教师表演的节目的不同编排顺序共有______ 种.(用数字填写答案)
有5盆互不相同的菊花,其中2盆为白色,2盆为黄色,1盆为红色,现要摆成一排,要求红色菊花在中间,白色菊花不相邻,黄色菊花也不相邻,则共有____种不同的摆放方法(用数字作答).
已知5辆不同的白颜色和3辆不同的红颜色汽车停成一排,则白颜色汽车至少2辆停在一起且红颜色的汽车互不相邻的停放方法有( )
A.1880 | B.1440 | C.720 | D.256 |
某高中高三某班上午安排五门学科
语文,数学,英语,化学,生物
上课,一门学科一节课,要求语文与数学不能相邻,生物不能排在第五节,则不同的排法总数是______.


以下问题最终结果用数字表示
(1)由0、1、2、3、4可以组成多少个无重复数字的五位偶数?
(2)由1、2、3、4、5组成多少个无重复数字且2、3不相邻的五位数?
(3)由1、2、3、4、5组成多少个无重复数字且数字1,2,3必须按由大到小顺序排列的五位数?
(1)由0、1、2、3、4可以组成多少个无重复数字的五位偶数?
(2)由1、2、3、4、5组成多少个无重复数字且2、3不相邻的五位数?
(3)由1、2、3、4、5组成多少个无重复数字且数字1,2,3必须按由大到小顺序排列的五位数?