- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 全排列问题
- 元素(位置)有限制的排列问题
- 相邻问题的排列问题
- + 不相邻排列问题
- 其他排列模型
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
从由1,2,3,4,5,6组成的没有重复数字的六位数中任取5个不同的数,其中满足1,3都不与5相邻的六位偶数的个数为随机变量X,则P(X=2)=_____.(结果用式子表示即可)
有3名男生、4名女生,在下列不同条件下,求不同的排列方法总数.
(1)选5人排成一排;
(2)排成前后两排,前排3人,后排4人;
(3)全体排成一排,女生必须站在一起;
(4)全体排成一排,男生互不相邻;
(5)全体排成一排,其中甲不站最左边,也不站最右边;
(6)全体排成一排,其中甲不站最左边,乙不站最右边.
(1)选5人排成一排;
(2)排成前后两排,前排3人,后排4人;
(3)全体排成一排,女生必须站在一起;
(4)全体排成一排,男生互不相邻;
(5)全体排成一排,其中甲不站最左边,也不站最右边;
(6)全体排成一排,其中甲不站最左边,乙不站最右边.
某班准备从含有甲、乙的7名男生中选取4人参加4×100米接力赛,要求甲、乙两人同时参加,且他们在赛道上顺序不能相邻,则不同的排法种数是( )
A.720 | B.20 |
C.240 | D.120 |
如图,某建筑工地搭建的脚手架局部类似于一个2×2×3的长方体框架,一个建筑工人欲从A处沿脚手架攀登至B处,则其最近的行走路线中不连续向上攀登的概率为( )


A.![]() | B.![]() |
C.![]() | D.![]() |
电影院一排10个位置,甲、乙、丙三人去看电影,要求他们坐在同一排,那么他们每人左右两边都有空位且甲坐在中间的坐法有________种
某班班会准备从含甲、乙、丙的7名学生中选取4人发言,要求甲、乙两人至少有一个发言,且甲、乙都发言时丙不能发言,则甲、乙两人都发言且发言顺序不相邻的概率为( )
A.![]() | B.![]() | C.![]() | D.![]() |












A.72 | B.112 | C.160 | D.192 |
7人站成一排.(写出必要的过程,结果用数字作答)
(1)甲、乙两人相邻的排法有多少种?
(2)甲、乙两人不相邻的排法有多少种?
(3)甲、乙、丙三人两两不相邻的排法有多少种?
(4)甲、乙、丙三人至多两人不相邻的排法有多少种?
(1)甲、乙两人相邻的排法有多少种?
(2)甲、乙两人不相邻的排法有多少种?
(3)甲、乙、丙三人两两不相邻的排法有多少种?
(4)甲、乙、丙三人至多两人不相邻的排法有多少种?
我市某学校组织学生前往南京研学旅行,途中4位男生和3位女生站成一排合影留念,男生甲和乙要求站在一起,3位女生不全站在一起,则不同的站法种数是( )
A.964 | B.1080 | C.1296 | D.1152 |