- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 全排列问题
- 元素(位置)有限制的排列问题
- 相邻问题的排列问题
- + 不相邻排列问题
- 其他排列模型
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(1)3个人坐在有八个座位的一排椅子上,若每个人的左右两边都要有空位,则不同坐法的种数为多少?
(2)某高校现有10个保送上大学的名额分配给7所高中学校,若每所高中学校至少有1个名额,则名额分配的方法共有多少种?
(2)某高校现有10个保送上大学的名额分配给7所高中学校,若每所高中学校至少有1个名额,则名额分配的方法共有多少种?
一次演出,因临时有变化,拟在已安排好的4个节目的基础上再添加2个小品节目,且2个小品节目不相邻,则不同的添加方法共有______种.
江夏一中将要举行校园歌手大赛,现有3男3女参加,需要安排他们的出场顺序.(结果用数字作答)
(1)如果3个女生都不相邻,那么有多少种不同的出场顺序?
(2)如果女生甲在女生乙的前面(可以不相邻),那么有多少种不同的出场顺序?
(3)如果3位男生都相邻,且女生甲不在第一个出场,那么有多少种不同的出场顺序?
(1)如果3个女生都不相邻,那么有多少种不同的出场顺序?
(2)如果女生甲在女生乙的前面(可以不相邻),那么有多少种不同的出场顺序?
(3)如果3位男生都相邻,且女生甲不在第一个出场,那么有多少种不同的出场顺序?
已知身穿红、黄颜色衣服的各有两人,身穿蓝颜色衣服的有一人,现将这五人排成一行,则穿相同颜色衣服的人不相邻的概率是( )
A.![]() | B.![]() | C.![]() | D.![]() |
有3名男生、4名女生,在下列不同条件下,求不同的排列方法总数.
(1)选5人排成一排;
(2)排成前后两排,前排4人,后排3人;
(3)全体排成一排,甲不站排头也不站排尾;
(4)全体排成一排,女生必须站在一起;
(5)全体排成一排,男生互不相邻.
(1)选5人排成一排;
(2)排成前后两排,前排4人,后排3人;
(3)全体排成一排,甲不站排头也不站排尾;
(4)全体排成一排,女生必须站在一起;
(5)全体排成一排,男生互不相邻.
随着新政策的实施,海淘免税时代于2016年4月8日正式结束,新政策实施后,海外购物的费用可能会增加.为了解新制度对海淘的影响,某记者调查了身边喜欢海淘的10位朋友,其态度共有两类:第一类是会降低海淘数量,共有4人,第二类是不会降低海淘数量,共有6人.若该记者计划从这10人中随机选取5人按顺序进行采访,则“第一类”的人数多于“第二类”,且采访中“第二类”不连续进行的不同采访顺序有( )
A.3840 | B.5040 | C.6020 | D.7200 |
7个不同的元素排成一排.
(1)要求A、B元素排在一起有_________种排法?
(2)要求A、B,C元素中任何两个都不排在一起,且A在B前面,B在C前面有_________种排法?
(1)要求A、B元素排在一起有_________种排法?
(2)要求A、B,C元素中任何两个都不排在一起,且A在B前面,B在C前面有_________种排法?
室内体育课上王老师为了丰富课堂内容,调动同学们的积极性,他把第四排的8个同学请出座位并且编号为1,2,3,4,5,6,7,8.经过观察这8个同学的身体特征,王老师决定,按照1,2号相邻,3,4号相邻,5,6号相邻,而7号与8号不相邻的要求站成一排做一种游戏,有________ 种排法.(用数字作答)
(1)6名同学站成一排照相,则同学甲既不站在最左边又不站在最右边的站法有_____________种;
(2)甲、乙等6人按要求站成一排,则甲不站在最左边、乙不站在最右边的站法有_____________种;
(3)3名女生、4名男生站成一排,则女生必须相邻、男生也必须相邻的站法有_____________种;
(4)有8本不同的书,其中语文书4本、数学书4本,若将这8本书随机地并排摆放到书架的同一层上,则任意两本数学书都不相邻的摆放方式有_____________种.
(2)甲、乙等6人按要求站成一排,则甲不站在最左边、乙不站在最右边的站法有_____________种;
(3)3名女生、4名男生站成一排,则女生必须相邻、男生也必须相邻的站法有_____________种;
(4)有8本不同的书,其中语文书4本、数学书4本,若将这8本书随机地并排摆放到书架的同一层上,则任意两本数学书都不相邻的摆放方式有_____________种.