- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 全排列问题
- 元素(位置)有限制的排列问题
- 相邻问题的排列问题
- + 不相邻排列问题
- 其他排列模型
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
有3名男生、4名女生,在下列不同条件下,求不同的排列方法总数.
(1)全体站成一排,甲不站排头也不站排尾;
(2)全体站成一排,女生必须站在一起;
(3)全体站成一排,男生互不相邻.
(1)全体站成一排,甲不站排头也不站排尾;
(2)全体站成一排,女生必须站在一起;
(3)全体站成一排,男生互不相邻.
有3名男生、4名女生,在下列不同条件下,求不同的排列方法总数.
(1)排成前后两排,前排3人,后排4人;(2)全体站成一排,甲不站排头也不站排尾;
(3)全体站成一排,女生必须站在一起;(4)全体站成一排,男生互不相邻.(用数字作答)
(1)排成前后两排,前排3人,后排4人;(2)全体站成一排,甲不站排头也不站排尾;
(3)全体站成一排,女生必须站在一起;(4)全体站成一排,男生互不相邻.(用数字作答)
3名男生4名女生站成一排,求满足下列条件的排法共有多少种?
(1)任何2名女生都不相邻,有多少种排法?
(2)男生甲、乙相邻,有多少种排法?(结果用数字表示)
(1)任何2名女生都不相邻,有多少种排法?
(2)男生甲、乙相邻,有多少种排法?(结果用数字表示)
现有6个人排成一排照相,由于甲乙性格不合,所以要求甲乙不相邻,丙最高,要求丙站在最中间的两个位置中的一个位置上,则不同的站法有( )种.
A.![]() | B.![]() | C.![]() | D.![]() |
有3名男生,4名女生,在下列不同要求下,求不同的排列方法总数(用数字作答).
(1)全体排成一行,其中男生甲不在最左边;
(2)全体排成一行,其中4名女生必须排在一起;
(3)全体排成一行,3名男生两两不相邻.
(1)全体排成一行,其中男生甲不在最左边;
(2)全体排成一行,其中4名女生必须排在一起;
(3)全体排成一行,3名男生两两不相邻.
从1到9这9个数字中取3个偶数和4个奇数,试问:
(1)能组成多少个没有重复数字的七位数?
(2)在(1)中的七位数中,偶数排在一起,奇数也排在一起的有多少个?
(3)在(1)中任意2个偶数都不相邻的七位数有多少个?
(1)能组成多少个没有重复数字的七位数?
(2)在(1)中的七位数中,偶数排在一起,奇数也排在一起的有多少个?
(3)在(1)中任意2个偶数都不相邻的七位数有多少个?
6个人按下列要求站一横排,分别有多少种不同的站法?
(1)甲不站两端;
(2)甲、乙必须相邻;
(3)甲、乙不相邻;
(4)甲、乙之间间隔两人;
(5)甲、乙站在两端;
(6)甲不站左端,乙不站右端.
(1)甲不站两端;
(2)甲、乙必须相邻;
(3)甲、乙不相邻;
(4)甲、乙之间间隔两人;
(5)甲、乙站在两端;
(6)甲不站左端,乙不站右端.
有2名男生、3名女生,在下列不同条件下,求不同的排列方法总数.
(1)全体站成一排,甲不站排头也不站排尾;
(2)全体站成一排,女生必须站在一起;
(3)全体站成一排,男生互不相邻.
(1)全体站成一排,甲不站排头也不站排尾;
(2)全体站成一排,女生必须站在一起;
(3)全体站成一排,男生互不相邻.
3个男生4个女生站成一排,要求相邻两人性别不同且男生甲与女生乙相邻,则这样的站法有( )
A.56种 | B.72种 | C.84种 | D.120种 |