- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 完善列联表
- 列联表分析
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某学校课题组为了研究学生的数学成绩与学生细心程度的关系,在本校随机调查了100名学生进行研究.研究结果表明:在数学成绩及格的60名学生中有45人比较细心,另外15人比较粗心;在数学成绩不及格的40名学生中有10人比较细心,另外30人比较粗心.
(I)试根据上述数据完成
列联表:

(II)能否在犯错误的概率不超过0.001的前提下认为学生的数学成绩与细心程度有关系?
参考公式:
,其中
.
(I)试根据上述数据完成


(II)能否在犯错误的概率不超过0.001的前提下认为学生的数学成绩与细心程度有关系?
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:


某工科院校对A、B两个专业的男、女生人数进行调查统计,得到以下表格:
如果认为工科院校中“性别”与“专业”有关,那么犯错误的概率不会超过( )
注:
| 专业A | 专业B | 合计 |
女生 | 12 | | |
男生 | | 46 | 84 |
合计 | 50 | | 100 |
如果认为工科院校中“性别”与“专业”有关,那么犯错误的概率不会超过( )
注:

P(x2≥k) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
A.0.005 | B.0.01 | C.0.025 | D.0.05 |
为了解某班学生喜爱打篮球是否与性别有关,对本班45人进行了问卷调查得到了如下的列联表:
已知在全部45人中随机抽取1人,是男同学的概率为
(1)请将上面的列联表补充完整;
(2)是否有
的把握认为喜爱打篮球与性别有关,请说明理由。
附参考公式:
| 喜爱打篮球 | 不喜爱打篮球 | 合计 |
男生 | | 5 | |
女生 | 5 | | |
合计 | | | 45 |
已知在全部45人中随机抽取1人,是男同学的概率为

(1)请将上面的列联表补充完整;
(2)是否有

附参考公式:

![]() | 0.15 | 0,10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
高铁、网购、移动支付和共享单车被誉为中国的“新四大发明”,彰显出中国式创新的强劲活力.某移动支付公司从我市移动支付用户中随机抽取100名进行调查,得到如下数据:
(1)把每周使用移动支付6次及6次以上的用户称为“移动支付达人”,按分层抽样的方法,在我市所有“移动支付达人”中,随机抽取6名用户
①求抽取的6名用户中,男女用户各多少人;
②从这6名用户中抽取2人,求既有男“移动支付达人”又有女“移动支付达人”的概率
(2)把每周使用移动支付超过3次的用户称为“移动支付活跃用户”,填写下表,问能否在犯错误概率不超过0.01的前提下,认为“移动支付活跃用户”与性别有关?
附:
每周移动支付次数 | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 10 | 8 | 7 | 3 | 2 | 15 |
女 | 5 | 4 | 6 | 4 | 6 | 30 |
合计 | 15 | 12 | 13 | 7 | 8 | 45 |
(1)把每周使用移动支付6次及6次以上的用户称为“移动支付达人”,按分层抽样的方法,在我市所有“移动支付达人”中,随机抽取6名用户
①求抽取的6名用户中,男女用户各多少人;
②从这6名用户中抽取2人,求既有男“移动支付达人”又有女“移动支付达人”的概率
(2)把每周使用移动支付超过3次的用户称为“移动支付活跃用户”,填写下表,问能否在犯错误概率不超过0.01的前提下,认为“移动支付活跃用户”与性别有关?
| 非移动支付活跃用户 | 移动支付活跃用户 | 合计 |
男 | | | |
女 | | | |
合计 | | | |
附:

![]() | 0.100 | 0.050 | 0.010 |
![]() | 2.706 | 3.841 | 6.635 |
某医院治疗白血病有甲、乙两套方案,现就70名患者治疗后复发的情况进行了统计,得到其等高条形图如图所示(其中采用甲、乙两种治疗方案的患者人数之比为
.

(1)补充完整
列联表中的数据,并判断是否有
把握认为甲乙两套治疗方案对患者白血病复发有影响;
(2)为改进“甲方案”,按分层抽样组成了由5名患者构成的样本,求随机抽取2名患者恰好是复发患者和未复发患者各1名的概率.
附:
,
.


(1)补充完整


| 复发 | 未复发 | 总计 |
甲方案 | | | |
乙方案 | 2 | | |
总计 | | | 70 |
(2)为改进“甲方案”,按分层抽样组成了由5名患者构成的样本,求随机抽取2名患者恰好是复发患者和未复发患者各1名的概率.
附:
![]() | 0.05 | 0.01 | 0.005 | 0.001 |
![]() | 3.841 | 6.635 | 7.879 | 10.828 |


“中国式过马路”存在很大的交通安全隐患,某调查机构为了解路人对“中国式过马路”的态度是否与性别有关,从马路旁随机抽取30名路人进行了问卷调查,得到了如图的
列联表.已知在这30人中随机抽取1人抽到反感“中国式过马路”的路人的概率是
.
(1)求
列联表中的
的值;并完成
列联表;
(2)根据列联表中的数据,判断是否有
把握认为反感“中国式过马路”与性别有关?
参考公式:
,
临界值表:


(1)求



(2)根据列联表中的数据,判断是否有

参考公式:


| 男性 | 女性 | 合计 |
反感 | 10 | ![]() | |
不反感 | ![]() | 8 | |
合计 | | | 30 |
临界值表:
![]() | 0.400 | 0.250 | 0.150 | 0.100 | 0.050 | 0.025 |
![]() | 0.780 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
2019年
月湖北潜江将举办第六届“中国湖北(潜江)龙虾节”,为了解不同年龄的人对“中国湖北(潜江)龙虾节”关注程度,某机构随机抽取了年龄在
岁之间的
人进行调查,经统计“年轻人”与“中老年人”的人数之比为
.
(1)根据已知条件完成上面的
列联表,并判断能否有
的把握认为关注“中国湖北(潜江)龙虾节”是否和年龄段有关?
(2)现已用分层抽样的办法从中老年人中选取了
人进行问卷调查.若再从这
人中选取
人进行面对面询问,求事件“选取的
人中恰有
人关注“中国湖北(潜江)龙虾节””的概率.
附:参考公式
,其中
.
临界值表:




| 关注 | 不关注 | 合计 |
年轻人 | | ![]() | |
中老年人 | | | |
合计 | ![]() | ![]() | ![]() |
(1)根据已知条件完成上面的


(2)现已用分层抽样的办法从中老年人中选取了





附:参考公式


临界值表:
![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |
海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg), 其频率分布直方图如下:

(1)记A表示事件“旧养殖法的箱产量低于50kg”,估计A的概率;
(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:
(3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行较。



(1)记A表示事件“旧养殖法的箱产量低于50kg”,估计A的概率;
(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:
| 箱产量<50kg | 箱产量≥50kg |
旧养殖法 | | |
新养殖法 | | |
(3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行较。
附:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |


伴随着智能手机的深入普及,支付形式日渐多样化,打破了传统支付的局限性和壁垒,有研究表明手机支付的使用比例与人的年龄存在一定的关系,某调研机构随机抽取了50人,对他们一个月内使用手机支付的情况进行了统计,如表:
(1)若以“年龄55岁为分界点”,由以上统计数据完成下面的2×2列联表,并判断是否有99%的把握认为“使用手机支付”与人的年龄有关;
(2)若从年龄在[55,65),[65,75)内的被调查人中各随机选取2人进行追踪调查,记选中的4人中“使用手机支付”的人数为ξ,求随机变量ξ的分布列与数学期望;
参考数据如下:
参考格式:
,其中
年龄(单位:岁) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
人数 | 5 | 10 | 15 | 10 | 5 | 5 |
使用手机支付人数 | 3 | 10 | 12 | 7 | 2 | 1 |
(1)若以“年龄55岁为分界点”,由以上统计数据完成下面的2×2列联表,并判断是否有99%的把握认为“使用手机支付”与人的年龄有关;
| 年龄不低于55岁的人数 | 年龄低于55岁的人数 | 合计 |
使用 | | | |
不适用 | | | |
合计 | | | |
(2)若从年龄在[55,65),[65,75)内的被调查人中各随机选取2人进行追踪调查,记选中的4人中“使用手机支付”的人数为ξ,求随机变量ξ的分布列与数学期望;
参考数据如下:
![]() | 0.05 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
参考格式:


2018年11月21日,意大利奢侈品牌“
”在广告中涉嫌辱华,中国明星纷纷站出来抵制该品牌,随后京东、天猫、唯品会等中国电商平台全线下架了该品牌商品,当天有大量网友关注此事件,某网上论坛从关注此事件跟帖中,随机抽取了100名网友进行调查统计,先分别统计他们在跟帖中的留言条数,再把网友人数按留言条数分成6组:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60],得到如图所示的频率分布直方图;并将其中留言不低于40条的规定为“强烈关注”,否则为“一般关注”,对这100名网友进一步统计得到列联表的部分数据如表.

(1)根据如图所示的频率分布直方图,求网友留言条数的中位数;
(2)在答题卡上补全
列联表中数据;
(3)判断能否有
的把握认为网友对此事件是否为“强烈关注”与性别有关?
参考公式及数据:


(1)根据如图所示的频率分布直方图,求网友留言条数的中位数;
(2)在答题卡上补全

(3)判断能否有

| 一般关注 | 强烈关注 | 合计 |
男 | | | 45 |
女 | | 10 | 55 |
合计 | | | 100 |
参考公式及数据:

![]() | 0.05 | 0.025 | 0.010 | 0.005 |
![]() | 3.841 | 5.024 | 6.635 | 7.879 |