- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 完善列联表
- 列联表分析
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某机构对某市工薪阶层的收入情况与超前消费行为进行调查,随机抽查了200人,将他们的月收入(单位:百元)频数分布及超前消费的认同人数整理得到如下表格:
根据以上统计数据填写下面
列联表,并回答是否有99%的把握认为当月收入以8000元为分界点时,该市的工薪阶层对“超前消费”的态度有差异;
参考公式:
(其中
).
附表:
月收入(百元) | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | 20 | 40 | 60 | 40 | 20 | 20 |
认同超前消费的人数 | 8 | 16 | 28 | 21 | 13 | 16 |
根据以上统计数据填写下面

| 月收入不低于8000元 | 月收入低于8000元 | 总计 |
认同 | | | |
不认同 | | | |
总计 | | | |
参考公式:


附表:
![]() | 0.10 | 0.05 | 0.025 | 0.010 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 |
阿基米德是古希腊伟大的哲学家、数学家、物理学家,对几何学、力学等学科作出过卓越贡献.为调查中学生对这一伟大科学家的了解程度,某调查小组随机抽取了某市的100名高中生,请他们列举阿基米德的成就,把能列举阿基米德成就不少于3项的称为“比较了解”,少于三项的称为“不太了解”他们的调查结果如下:

(1)完成如下
列联表,并判断是否有
的把握认为,了解阿基米德与选择文理科有关?

(2)在抽取的100名高中生中,按照文理科采用分层抽样的方法抽取10人的样本.
(ⅰ)求抽取的文科生和理科生的人数;
(ⅱ)从10人的样本中随机抽取两人,求两人都是文科生的概率.
参考数据:

,
.

(1)完成如下



(2)在抽取的100名高中生中,按照文理科采用分层抽样的方法抽取10人的样本.
(ⅰ)求抽取的文科生和理科生的人数;
(ⅱ)从10人的样本中随机抽取两人,求两人都是文科生的概率.
参考数据:



“中国式过马路”存在很大的交通安全隐患.某调查机构为了解路人对“中国式过马路”的态度是否与性别有关,从马路旁随机抽取30名路人进行了问卷调查,得到了如下列联表:
已知在这30人中随机抽取1人抽到反感“中国式过马路”的路人的概率是
.
(1)请将上面的列联表补充完整(直接写结果,不需要写求解过程),并据此资料分析反感“中国式过马路”与性别是否有关?
(2)若从这30人中的女性路人中随机抽取2人参加一活动,记反感“中国式过马路”的人数为X,求X的分布列及均值.
附:
.
| 男性 | 女性 | 总计 |
反感 | 10 | | |
不反感 | | 8 | |
总计 | | | 30 |
已知在这30人中随机抽取1人抽到反感“中国式过马路”的路人的概率是

(1)请将上面的列联表补充完整(直接写结果,不需要写求解过程),并据此资料分析反感“中国式过马路”与性别是否有关?
(2)若从这30人中的女性路人中随机抽取2人参加一活动,记反感“中国式过马路”的人数为X,求X的分布列及均值.
附:

![]() | 0.10 | 0.05 | 0.010 | 0.005 |
![]() | 2.706 | 3.841 | 6.635 | 7.879 |
某省确定从2021年开始,高考采用“
”的模式,取消文理分科,即“3”包括语文、数学、外语,为必考科目;“1”表示从物理、历史中任选一门;“2则是从生物、化学、地理、政治中选择两门,共计六门考试科目.某高中从高一年级2000名学生(其中女生900人)中,采用分层抽样的方法抽取
名学生进行调查.
(1)已知抽取的
名学生中含男生110人,求
的值及抽取到的女生人数;
(2)学校计划在高二上学期开设选修中的“物理”和“历史”两个科目,为了了解学生对这两个科目的选课情况,对在(1)的条件下抽取到的
名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目且只能选择一个科目).下表是根据调查结果得到的
列联表,请将列联表补充完整,并判断是否有
的把握认为选择科目与性别有关?说明你的理由;
(3)在(2)的条件下,从抽取的选择“物理”的学生中按分层抽样抽取6人,再从这6名学生中抽取2人,对“物理”的选课意向作深入了解,求2人中至少有1名女生的概率.
附:
,其中
.


(1)已知抽取的


(2)学校计划在高二上学期开设选修中的“物理”和“历史”两个科目,为了了解学生对这两个科目的选课情况,对在(1)的条件下抽取到的



性别 | 选择物理 | 选择历史 | 总计 |
男生 | | 50 | |
女生 | 30 | | |
总计 | | | |
(3)在(2)的条件下,从抽取的选择“物理”的学生中按分层抽样抽取6人,再从这6名学生中抽取2人,对“物理”的选课意向作深入了解,求2人中至少有1名女生的概率.
附:


![]() | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
在一项研究中,为尽快攻克某一课题,某生物研究所分别设立了甲、乙两个研究小组同时进行对比试验,现随机在这两个小组各抽取40个数据作为样本,并规定试验数据落在[495,510)之内的数据作为理想数据,否则为不理想数据.试验情况如表所示

(1)由以上统计数据完成下面2×2列联表;

(2)判断是否有90%的把握认为抽取的数据为理想数据与对两个研究小组的选择有关;说明你的理由;(下面的临界值表供参考)

(参考公式:
其中n=a+b+c+d)

(1)由以上统计数据完成下面2×2列联表;

(2)判断是否有90%的把握认为抽取的数据为理想数据与对两个研究小组的选择有关;说明你的理由;(下面的临界值表供参考)

(参考公式:

手机支付也称为移动支付,是指允许用户使用其移动终端(通常是手机)对所消费的商品或服务进行账务支付的一种服务方式.随着信息技术的发展,手机支付越来越成为人们喜欢的支付方式.某机构对某地区年龄在15到75岁的人群“是否使用手机支付”的情况进行了调查,随机抽取了100人,其年龄频率分布表和使用手机支付的人数如下所示:(年龄单位:岁)

(1)若以45岁为分界点,根据以上统计数据填写下面的2×2列联表,并判断能否在犯错误的概率不超过0.001的前提下认为“使用手机支付”与年龄有关?

(2)若从年龄在[55,65),[65,75]的样本中各随机选取2人进行座谈,记选中的4人中“使用手机支付”的人数为X,求随机变量X的分布列和数学期望.
参考数据:

参考公式:
.

(1)若以45岁为分界点,根据以上统计数据填写下面的2×2列联表,并判断能否在犯错误的概率不超过0.001的前提下认为“使用手机支付”与年龄有关?

(2)若从年龄在[55,65),[65,75]的样本中各随机选取2人进行座谈,记选中的4人中“使用手机支付”的人数为X,求随机变量X的分布列和数学期望.
参考数据:

参考公式:

“微信运动”已经成为当下热门的健身方式,韩梅梅的微信朋友圈内有800为好友参与了“微信运动”.他随机抽取了50为微信好友(男、女各25人),统计其在某一天的走路步数.其中女性好友的走路步数数据记录如下:
12860 8320 10231 6734 7323 8430 3200 4543 11123 9860
8753 6454 7292 4850 10222 9734 7944 9117 6421 2980
1123 1786 2436 3876 4326
男性好友走路步数情况可以分为五个类别
(0-2000步)(说明:“0-2000”表示大于等于0,小于等于2000,下同),
(2001-5000)、
(5001-8000)、
(8001-10000步)、
(10001步及以上),且
三中类型的人数比例为
,将统计结果绘制如图所示的柱形图.

若某人一天的走路步数超过8000步则被系统评定为“积极型”,否则被系统评定为“懈怠型”.
(1)若以韩梅梅抽取的好友当天行走步数的频率分布来估计所有微信好友每日走路步数的概率分布,请估计韩梅梅的微信好友圈里参与“微信运动”的800名好友中,每天走路步数在5001-10000步的人数;
(2)请根据选取的样本数据完成下面的
列联表,并据此判断能否有95%以上的把握认为“评定类型”与“性别”有关?
(3)若从韩梅梅当天选取的步数大于10000的好友中按男女比例分层选取5人进行身体状况调查,然后再从这5位好友中选取2人进行访谈,求至少有一位女性好友访谈的概率.
参考公式:
,其中
.
临界值表:
12860 8320 10231 6734 7323 8430 3200 4543 11123 9860
8753 6454 7292 4850 10222 9734 7944 9117 6421 2980
1123 1786 2436 3876 4326
男性好友走路步数情况可以分为五个类别








若某人一天的走路步数超过8000步则被系统评定为“积极型”,否则被系统评定为“懈怠型”.
(1)若以韩梅梅抽取的好友当天行走步数的频率分布来估计所有微信好友每日走路步数的概率分布,请估计韩梅梅的微信好友圈里参与“微信运动”的800名好友中,每天走路步数在5001-10000步的人数;
(2)请根据选取的样本数据完成下面的

| 积极型 | 懈怠型 | 总计 |
男 | | | 25 |
女 | | | 25 |
总计 | | | 30 |
(3)若从韩梅梅当天选取的步数大于10000的好友中按男女比例分层选取5人进行身体状况调查,然后再从这5位好友中选取2人进行访谈,求至少有一位女性好友访谈的概率.
参考公式:


临界值表:
![]() | 0.100 | 0.050 | 0.010 | 0.001 |
![]() | 2.706 | 3.841 | 6.635 | 10.828 |
“双十一”已经成为网民们的网购狂欢节,某电子商务平台对某市的网民在今年“双十一”的网购情况进行摸底调查,用随机抽样的方法抽取了100人,其消费金额
(百元)的频率分布直方图如图所示:

(1)求网民消费金额
的平均值和中位数
;
(2)把下表中空格里的数填上,能否有
的把握认为网购消费与性别有关.
附表:

.


(1)求网民消费金额


(2)把下表中空格里的数填上,能否有

| 男 | 女 | 合计 |
![]() | | | |
![]() | | 30 | |
合计 | 45 | | |
附表:


某省确定从2021年开始,高考采用“3十l+2”的模式,取消文理分科,即“3”包括语文、数学、外语,为必考科目,“1”表示从物理、历史中任选一门;“2”则是从,生物、化学、地理、政治中选择两门,共计六门考试科目.某高中从高一年级2000名学生(其中女生900人)中,采用分层抽样的方法抽取n名学进行讲行调查.
(1)已知抽取的n名学生中含男生110人,求n的值及抽取到的女生人数;
(2)学校计划在高二上学期开设选修中的“物理”和“历史”两个科目,为了了解学生对这两个科目的选课情况,对在(1)的条件下抽取到的以名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目且只能选择一个科目).下表是根据调查结果得到的2×2列联表,请将列联表补充完整,并判断是否有99.5%的把握认为选择科目与性别有关?说明你的理由;
(3)在(2)的条件下,从抽取的选择“物理”的学生中按分层抽样抽取6人,再从这6名学生中抽取2人,对“物理’’的选课意向作深入了解,求2人中至少有1名女生的概率,
附:
,其中n=a+b+c+d.
(1)已知抽取的n名学生中含男生110人,求n的值及抽取到的女生人数;
(2)学校计划在高二上学期开设选修中的“物理”和“历史”两个科目,为了了解学生对这两个科目的选课情况,对在(1)的条件下抽取到的以名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目且只能选择一个科目).下表是根据调查结果得到的2×2列联表,请将列联表补充完整,并判断是否有99.5%的把握认为选择科目与性别有关?说明你的理由;
性别 | 选择物理 | 选择历史 | 总计 |
男生 | | 50 | |
女生 | 30 | | |
总计 | | | |
(3)在(2)的条件下,从抽取的选择“物理”的学生中按分层抽样抽取6人,再从这6名学生中抽取2人,对“物理’’的选课意向作深入了解,求2人中至少有1名女生的概率,
附:


海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了
个网箱,测量各箱水产品的产量(单位:
),其频率分布直方图如下:

(1)网箱产量不低于
为“理想网箱”,填写下面列联表,并根据列联表判断是否有
的把握认为“理想网箱”的数目与养殖方法有关:
(2)已知旧养殖法
个网箱需要成本
元,新养殖法
个网箱需要增加成本
元,该水产品的市场价格为
元/
,根据箱产量的频率分布直方图(说明:同一组中的数据用该组区间的中间值作代表),采用哪种养殖法,请给养殖户一个较好的建议,并说明理由.
附参考公式及参考数据:




(1)网箱产量不低于


| 箱产量![]() | 箱产量![]() | 合计 |
旧养殖法 | | | |
新养殖法 | | | |
合计 | | | |
(2)已知旧养殖法






附参考公式及参考数据:
![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |
