每年的4月23日为“世界读书日”,某调查机构对某校学生做了一个是否喜爱阅读的抽样调查,该调查机构从该校随机抽查了名不同性别的学生,现已得知人中喜爱阅读的学生占,统计情况如下表
 
喜爱
不喜爱
合计
男生

 
 
女生
 

 
合计
 
 

 
(1)完成列联表,根据以上数据,能否有的把握认为是否喜爱阅读与被调查对象的性别有关?请说明理由:
(2)将上述调查所得的频率视为概率,现在从所有学生中,采用随机抽样的方法抽取位学生进行调查,求抽取的位学生中至少有人喜爱阅读的概率,(以下临界值及公式仅供参考)












 
当前题号:1 | 题型:解答题 | 难度:0.99
某工厂甲、乙两条生产线生产同款产品,若产品按照一、二、三等级分类后销售,每件可分别获利元,元,元,现从甲、乙两条生产线的产品中各随机抽取件进行检测,统计结果如图所示.

(1)填写下面列联表,并根据列联表判断是否有的把握认为一等级产品与生产线有关:
 
一等级
非一等级
合计
甲生产线
 
 
 
乙生产线
 
 
 
合计
 
 
 
 
(2)分别计算两条生产线抽样产品获利的方差,以此作为判断根据,说明哪条生产线的获利更稳定?
(3)将频率视为概率,用样本的频率分布估计总体分布,估计该厂产量为件时一等级产品的利润.
附:








 
.
当前题号:2 | 题型:解答题 | 难度:0.99
某城市随机抽取一年(365天)内100天的空气质量指数API的监测数据,结果统计如下:
API







空气

质量


良 
轻微

污染

轻度

污染

中度

污染

中度

重污染

重度

污染

天数
4
13
18
30
9
11
15
 
(1)若某企业每天由空气污染造成的经济损失S(单位:元)与空气质量指数API(记为ω)的关系式为,试估计在本年内随机抽取一天,该天经济损失S大于400元且不超过700元的概率;
(2)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下面列联表,并判断能否有95%的把握认为该市本年空气重度污染与供暖有关?

附:

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

 

 

非重度污染

重度污染

合计

供暖季

 

 

 

非供暖季

 

 

 

合计

 

 

100

 

 
当前题号:3 | 题型:解答题 | 难度:0.99
下面是一个列联表

则表中处的值分别为(   )
A.B.C.D.
当前题号:4 | 题型:单选题 | 难度:0.99
甲乙两班级进行数学测试,每班45人,统计学生成绩,乙班优秀率为,甲班优秀人数比乙班多三人.
(1)根据所给数据完成下列列联表;
 
优秀
不优秀
总计
甲班
 
 
 
乙班
 
 
 
总计
 
 
 
 
(2)能否在犯错误的概率不超过0.010的前提下,认为成绩与班级有关系?
参考公式::,其中
临界值表供参考:

0.150
0.100
0.050
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
当前题号:5 | 题型:解答题 | 难度:0.99
某部门为了解人们对“延迟退休年龄政策”的支持度,随机调查了100人,调查发现持不支持态度的有75人,其中男性占. 分析这个持不支持态度的样本的年龄和性别结构,绘制等高条形图如图所示.

(1)在持不支持态度的人中,45周岁及以上的男女比例是多少?
(2)调查数据显示,25个持支持态度的人中有16人年龄在45周岁以下.填写下面的列联表,问能否有的把握认为年龄是否在45周岁以下与对“延迟退休年龄政策”的态度有关?
 
45周岁以下
45周岁及以上
总计
不支持
 
 
 
支持
 
 
 
总计
 
 
 
 
参考公式及数据:.
















 
当前题号:6 | 题型:解答题 | 难度:0.99
某校从参加高二年级期末考试的学生中随机抽取了名学生,已知这名学生的物理成绩均不低于60分(满分为100分).现将这名学生的物理成绩分为四组:,得到的频率分布直方图如图所示,其中物理成绩在内的有28名学生,将物理成绩在内定义为“优秀”,在内定义为“良好”.

 
男生
女生
合计
优秀
 
 
 
良好
 
20
 
合计
 
60
 
 
(1)求实数的值及样本容量
(2)根据物理成绩是否优秀,利用分层抽样的方法从这名学生中抽取10名,再从这10名学生中随机抽取3名,求这3名学生的物理成绩至少有2名是优秀的概率;
(3)请将列联表补充完整,并判断是否有的把握认为物理成绩是否优秀与性别有关?
参考公式及数据:
(其中).
 
0.150
0.100
0.050
0.025
0.010
0.005
0.001
 
2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
当前题号:7 | 题型:解答题 | 难度:0.99
环境问题是当今世界共同关注的问题,我国环保总局根据空气污染指数PM2.5浓度,制定了空气质量标准:
空气污染指数
(0,50]
(50,100]
(100,150]
(150,200]
(200,300]
(300,+∞)
空气质量等级


轻度污染
中度污染
重度污染
严重污染
 
某市政府为了打造美丽城市,节能减排,从2010年开始考察了连续六年11月份的空气污染指数,绘制了频率分布直方图,经过分析研究,决定从2016年11月1日起在空气质量重度污染和严重污染的日子对机动车辆限号出行,即车牌尾号为单号的车辆单号出行,车牌尾号为双号的车辆双号出行(尾号是字母的,前13个视为单号,后13个视为双号).王先生有一辆车,若11月份被限行的概率为0.05.

(1)求频率分布直方图中m的值;
(2)若按分层抽样的方法,从空气质量等级为良与中度污染的天气中抽取6天,再从这6天中随机抽取2天,求至少有一天空气质量是中度污染的概率;
(3)该市环保局为了调查汽车尾气排放对空气质量的影响,对限行两年来的11月份共60天的空气质量进行统计,其结果如下表:
空气质量


轻度污染
中度污染
重度污染
严重污染
天数
11
27
11
7
3
1
 
根据限行前6年180天与限行后60天的数据,计算并填写2×2列联表,并回答是否有90%的把握认为空气质量的优良与汽车尾气的排放有关.
 
空气质量优、良
空气质量污染
总计
限行前
 
 
 
限行后
 
 
 
总计
 
 
 
 
参考数据:

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
参考公式:,其中.
当前题号:8 | 题型:解答题 | 难度:0.99
几个月前,成都街头开始兴起“mobike”、“ofo”等共享单车,这样的共享单车为很多市民解决了最后一公里的出行难题.然而,这种模式也遇到了一些让人尴尬的问题,比如乱停乱放,或将共享单车占为“私有”等.
为此,某机构就是否支持发展共享单车随机调查了50人,他们年龄的分布及支持发展共享单车的人数统计如下表:
年龄






受访人数
5
6
15
9
10
5
支持发展

共享单车人数

4
5
12
9
7
3
 
(Ⅰ)由以上统计数据填写下面的列联表,并判断能否在犯错误的概率不超过0.1的前提下,认为年龄与是否支持发展共享单车有关系;
 
年龄低于35岁
年龄不低于35岁
合计
支持
 
 
 
不支持
 
 
 
合计
 
 
 
 
(Ⅱ)若对年龄在的被调查人中各随机选取两人进行调查,记选中的4人中支持发展共享单车的人数为,求随机变量的分布列及数学期望.
参考数据:

0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001

0.455
0.708
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
参考公式:,其中
当前题号:9 | 题型:解答题 | 难度:0.99
2019年“两会”报告指出,5G在下半年会零星推出,2020年有望实现大范围使用。随着移动通信产业的发展,全球移动宽带(,简称)用户数已达54亿,占比70%(用户比例简称渗透率),但在部分发展中国家该比例甚至低于20%。

 
基站覆盖率小于80%
基站覆盖率大于80%
总计
渗透率低于20%
 
 
 
渗透率高于20%
 
 
 
总计
 
 
 
 
(1)现对140个发展中国家进行调查,发现140个发展中国家中有25个国家MBB基站覆盖率小于80%,其中渗透率低于20%的有15个国家,而基站覆盖率大于80%的国家中渗透率低于20%的有25个国家.由以上统计数据完成下面列联表,并判断是否有99%的把握认为渗透率与基站覆盖率有关;
(2)基站覆盖率小于80%,其中渗透率低于20%的国家中手机占居民人均收入比例和资费居民人均收入比例如茎叶图所示,请根据茎叶图求这些国家中的手机占居民人均收入比例的中位数和资费居民人均收入比例平均数;
(3)根据以上数据判断,若要提升渗透率,消除数字化鸿沟,把数字世界带入每个人,需要重点解决哪些问题。
附:参考公式:;其中
临界值表:

0.050
0.025
0.010
0.005
0.001

3.841
5.024
6.635
7.879
10.828
 
当前题号:10 | 题型:解答题 | 难度:0.99