高铁、网购、移动支付和共享单车被誉为中国的“新四大发明”,彰显出中国式创新的强劲活力.某移动支付公司从我市移动支付用户中随机抽取100名进行调查,得到如下数据:
每周移动支付次数
1次
2次
3次
4次
5次
6次及以上

10
8
7
3
2
15

5
4
6
4
6
30
合计
15
12
13
7
8
45
 
(1)把每周使用移动支付超过3次的用户称为“移动支付活跃用户”,由以上数据完成下列2×2列联表,并判断能否在犯错误的概率不超过0.005的前提下,认为“移动支付活跃用户”与性别有关?
 
移动支付活跃用户
非移动支付活跃用户
总计

 
 
 

 
 
 
总计
 
 
100
 
(2)把每周使用移动支付6次及6次以上的用户称为“移动支付达人”,视频率为概率,在我市所有“移动支付达人”中,随机抽取4名用户.为了鼓励男性用户使用移动支付,对抽出的男“移动支付达人”每人奖励300元,记奖励总金额为,求的分布列及数学期望.
附公式及表如下:

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
当前题号:1 | 题型:解答题 | 难度:0.99
如图是一个列联表,则表中的值分别为(  )
 


总计


35
45

7


总计

73

 
A.10,38B.17,45C.10,45D.17,38
当前题号:2 | 题型:单选题 | 难度:0.99
有甲乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表.
 
优秀
非优秀
总计
甲班
10
 
 
乙班
 
30
 
总计
 
 
105
 
已知在全部105人中随机抽取1人为优秀的概率为.
(1)请完成上面的列联表;
(2)根据列联表的数据,若按95%的可靠性要求,能否认为“成绩与班级有关系”?
参考公式:K2
P(K2k0)
0.10
0.05
0.025
0.010
k0
2.706
3.841
5.024
6.635
 
当前题号:3 | 题型:解答题 | 难度:0.99
2017年10月9日,教育部考试中心下发了《关于年普通高考考试大纲修订内容的通知》,在各科修订内容中明确提出,增加中华优秀传统文化的考核内容,积极培育和践行社会主义核心价值观,充分发挥高考命题的育人功能和积极导向作用.鞍山市教育部门积极回应,编辑传统文化教材,在全是范围内开设书法课,经典诵读等课程.为了了解市民对开设传统文化课的态度,教育机构随机抽取了位市民进行了解,发现支持开展的占,在抽取的男性市民人中支持态度的为人.
 
支持
不支持
合计
男性
 
 
 
女性
 
 
 
合计
 
 
 
 
(1)完成列联表
(2)判断是否有的把握认为性别与支持有关?
附:.
















 
当前题号:4 | 题型:解答题 | 难度:0.99
市某机构为了调查该市市民对我国申办年足球世界杯的态度,随机选取了位市民进行调查,调查结果统计如下:
 
支持
不支持
合计
男性市民
 
 

女性市民
 

 
合计

 

 
(1)根据已知数据,把表格数据填写完整;
(2)利用(1)完成的表格数据回答下列问题:
(i)能否在犯错误的概率不超过的前提下认为支持申办足球世界杯与性别有关;
(ii)已知在被调查的支持申办足球世界杯的男性市民中有位退休老人,其中位是教师,现从这位退休老人中随机抽取人,求至多有位老师的概率.
附:,其中.












 
当前题号:5 | 题型:解答题 | 难度:0.99
某种子培育基地新研发了两种型号的种子,从中选出90粒进行发芽试验,并根据结果对种子进行改良.将试验结果汇总整理绘制成如下列联表:

(1)将列联表补充完整,并判断是否有99%的把握认为发芽和种子型号有关;
(2)若按照分层抽样的方式,从不发芽的种子中任意抽取20粒作为研究小样本,并从这20粒研究小样本中任意取出3粒种子,设取出的型号的种子数为,求的分布列与期望.

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
,其中.
当前题号:6 | 题型:解答题 | 难度:0.99
2018年3月山东省高考改革实施方案发布:2020年夏季高考开始全省高考考生总成绩将由语文、数学、外语三门统一高考成绩和学生自主选择的普通高中学业水平等级性考试科目的成绩共同构成.省教育厅为了解正就读高中的学生家长对高考改革方案所持的赞成态度,随机从中抽取了100名城乡家长作为样本进行调查,调查结果显示样本中有25人持不赞成意见.右面是根据样本的调查结果绘制的等高条形图.

(Ⅰ)请根据已知条件与等高条形图完成下面的列联表:
 
赞成
不赞成
合计
城镇居民
 
 
 
农村居民
 
 
 
合计
 
 
 
 
(Ⅱ)试判断我们是否有95%的把握认为“赞成高考改革方案与城乡户口有关”?.
(附),其中.

0.150
0.100
0.050
0.005
0.001

2.072
2.706
3.841
7.879
10.828
 
当前题号:7 | 题型:解答题 | 难度:0.99
为了解某班学生喜爱打篮球是否与性别有关,对本班48人进行了问卷调查得到了如下的2×2列联表:
 
喜爱打篮球
不喜爱打篮球
合计
男生
 
6
 
女生
10
 
 
合计
 
 
48
 
已知在全班48人中随机抽取1人,抽到喜爱打篮球的学生的概率为.
(1)请将上面的2×2列联表补充完整;(不用写计算过程)
(2)能否在犯错误的概率不超过0.05的前提下认为喜爱打篮球与性别有关?说明你的理由.
P(K2≥k0)
0.05
0.025
0.010
0.005
0.001
k0
3.841
5.024
6.635
7.879
10.828
 
(参考公式:,其中
当前题号:8 | 题型:解答题 | 难度:0.99
某企业对现有设备进行了改造,为了了解设备改造后的效果,现从设备改造前后生产的大量产品中各抽取了100件产品作为样本,检测其质量指标值,若质量指标值在内,则该产品视为合格品,否则视为不合格品.图1是设备改造前的样本的频率分布直方图,表1是设备改造后的样本的频数分布表.

(1)完成列联表,并判断是否有99%的把握认为该企业生产的这种产品的质量指标值与设备改造有关:
 
设备改造前
设备改造后
合计
合格品
 
 
 
不合格品
 
 
 
合计
 
 
 
 
(2)根据图1和表1提供的数据,试从产品合格率的角度对改造前后设备的优劣进行比较;
(3)企业将不合格品全部销毁后,根据客户需求对合格品进行等级细分,质量指标值落在内的定为一等品,每件售价180元;质量指标值落在内的定为二等品,每件售价150元;其他的合格品定为三等品,每件售价120元.根据频数分布表1的数据,用该组样本中一等品、二等品、三等品各自在合格品中的频率代替从所有合格产品中抽到一件相应等级产品的概率.现有一名顾客随机购买两件产品,设其支付的费用为(单位:元),求的分布列和数学期望.
附:

0.150
0.100
0.050
0.025
0.010

2.072
2.706
3.841
5.024
6.635
 

参考公式:

当前题号:9 | 题型:解答题 | 难度:0.99
学校对甲、乙两个班级的同学进行了体能测验,成绩统计如下(每班50人):

(1)成绩不低于80分记为“优秀”.请填写下面的列联表,并判断是否有的把握认为“成绩优秀”与所在教学班级有关?

(2)从两个班级的成绩在的所有学生中任选2人,其中,甲班被选出的学生数记为,求的分布列与数学期望.
赋:.
当前题号:10 | 题型:解答题 | 难度:0.99