- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 完善列联表
- 列联表分析
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
第一次大考后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优
秀,统计成绩后,得到如下
列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为
.
(I)请完成列联表
(Ⅱ)根据列联表的数据能否在犯错误的概率不超过0.01的前提下认为成绩与班级有关系?
参考公式和临界值表
,其中
.



(I)请完成列联表
| 优秀 | 非优秀 | 合计 |
甲班 | 10 | | |
乙班 | | 30 | |
合计 | | | 110 |
(Ⅱ)根据列联表的数据能否在犯错误的概率不超过0.01的前提下认为成绩与班级有关系?
参考公式和临界值表


![]() | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
在对人们休闲方式的一次调查中,其中主要休闲方式的选择有看电视和运动,现共调查了100人,已知在这100人中随机抽取1人,抽到主要休闲方式为看电视的人的概率为
.
(1)完成下列2×2列联表;
(2)请判断是否可以在犯错误的概率不超过0.005的前提下认为性别与休闲方式有关系?
参考公式

(1)完成下列2×2列联表;
| 休闲方式为看电视 | 休闲方式为运动 | 合计 |
女性 | 40 | | |
男性 | | 30 | |
合计 | | | |
(2)请判断是否可以在犯错误的概率不超过0.005的前提下认为性别与休闲方式有关系?
参考公式

P(K2≥k) | 0.25 | 0.15 | 0.10 | 0.025 | 0.010 | 0.005 |
k | 1.323 | 2.072 | 2.706 | 5.024 | 6.635 | 7.879 |
伴随着智能手机的深入普及,支付形式日渐多样化,打破了传统支付的局限性和壁垒,有研究表明手机支付的使用比例与人的年龄存在一定的关系,某调研机构随机抽取了50人,对他们一个月内使用手机支付的情况进行了统计,如下表:

(1)若以“年龄55岁为分界点”,由以上统计数据完成下面的
列联表,并判断是否有
的把握认为“使用手机支付”与人的年龄有关;

(2)若从年龄在
,
内的被调查人中各随机选取2人进行追踪调查,记选中的4人中“使用手机支付”的人数为
.
①求随机变量
的分布列;
②求随机变量
的数学期望.
参考数据如下:
参考格式:
,其中

(1)若以“年龄55岁为分界点”,由以上统计数据完成下面的



(2)若从年龄在



①求随机变量

②求随机变量

参考数据如下:
![]() | 0.05 | 0.010 | 0.001 |
![]() | 3.841 | 6.635 | 10.828 |
参考格式:


“微信运动”是一个类似计步数据库的公众账号.用户只需以运动手环或手机协处理器的运动数据为介,然后关注该公众号,就能看见自己与好友每日行走的步数,并在同一排行榜上得以体现.现随机选取朋友圈中的50人,记录了他们某一天的走路步数,并将数据整理如下:
规定:人一天行走的步数超过8000步时被系统评定为“积极性”,否则为“懈怠性”.
(1)填写下面列联表(单位:人),并根据列表判断是否有90%的把握认为“评定类型与性别有关”;
附:

(2)为了进一步了解“懈怠性”人群中每个人的生活习惯,从步行数在
的人群中再随机抽取3人,求选中的人中男性人数超过女性人数的概率.
步数/步 | ![]() | ![]() | ![]() | ![]() | 10000以上 |
男生人数/人 | 1 | 2 | 7 | 15 | 5 |
女性人数/人 | 0 | 3 | 7 | 9 | 1 |
规定:人一天行走的步数超过8000步时被系统评定为“积极性”,否则为“懈怠性”.
(1)填写下面列联表(单位:人),并根据列表判断是否有90%的把握认为“评定类型与性别有关”;
| 积极性 | 懈怠性 | 总计 |
男 | | | |
女 | | | |
总计 | | | |
附:
![]() | 0.10 | 0.05 | 0.010 | 0.005 | 0.001 |
![]() | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |

(2)为了进一步了解“懈怠性”人群中每个人的生活习惯,从步行数在

2022年北京冬奥会的申办成功与“3亿人上冰雪”口号的提出,将冰雪这个冷项目迅速炒“热”.北京某综合大学计划在一年级开设冰球课程,为了解学生对冰球运动的兴趣,随机从该校一年级学生中抽取了100人进行调查,其中女生中对冰球运动有兴趣的占
,而男生有10人表示对冰球运动没有兴趣额.
(1)完成
列联表,并回答能否有
的把握认为“对冰球是否有兴趣与性别有关”?

(2)若将频率视为概率,现再从该校一年级全体学生中,采用随机抽样的方法每次抽取1名学生,抽取5次,记被抽取的5名学生中对冰球有兴趣的人数为
,若每次抽取的结果是相互独立的,求
的分布列,期望和方差.
附表:


(1)完成



(2)若将频率视为概率,现再从该校一年级全体学生中,采用随机抽样的方法每次抽取1名学生,抽取5次,记被抽取的5名学生中对冰球有兴趣的人数为


附表:


传承传统文化再掀热潮,央视科教频道以诗词知识竞赛为主的《中国诗词大会》火爆荧屏.将中学组和大学组的参赛选手按成绩分为优秀、良好、一般三个等级,随机从中抽取了100名选手进行调查,下面是根据调查结果绘制的选手等级人数的条形图.

(1)若将一般等级和良好等级合称为合格等级,根据已知条件完成下面的
列联表,据此资料你是否有95%的把握认为选手成绩“优秀”与文化程度有关?
注:
,其中
.
(2)若参赛选手共6万人,用频率估计概率,试估计其中优秀等级的选手人数.
(3)在优秀等级的选手中取6名,依次编号为1,2,3,4,5,6.在良好等级的选手中取6名,依次编号为1,2,3,4,5,6,在选出的6名优秀等级的选手中任取一名,记其编号为
,在选出的6名良好等级的选手中任取一名,记其编号为
,求使得方程组
有唯一一组实数解
的概率.

(1)若将一般等级和良好等级合称为合格等级,根据已知条件完成下面的

| 优秀 | 合格 | 合计 |
大学组 | | | |
中学组 | | | |
合计 | | | |
注:


![]() | 0.10 | 0.05 | 0.005 |
![]() | 2.706 | 3.841 | 7.879 |
(2)若参赛选手共6万人,用频率估计概率,试估计其中优秀等级的选手人数.
(3)在优秀等级的选手中取6名,依次编号为1,2,3,4,5,6.在良好等级的选手中取6名,依次编号为1,2,3,4,5,6,在选出的6名优秀等级的选手中任取一名,记其编号为




某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于 120 分为优秀,120 分以下为非优秀.统计成绩后,得到如下的
列联表,且已知在甲、乙两个文科班全部 110 人中随机抽取 1 人为优秀的概率为
.
[Failed to download image : http://192.168.0.10:8086/QBM/2019/1/21/2123405759889408/2123723059576832/STEM/e555fb651e6b4d3f9aabd23a31a05280.png]
(1)请完成上面的列联表;
(2)根据列联表的数据,是否有 99.9% 的把握认为“成绩与班级有关系”.
参考公式与临界值表:
.
[Failed to download image : http://192.168.0.10:8086/QBM/2019/1/21/2123405759889408/2123723059576832/STEM/6b24c60b17f044df9a19c7fe53434d26.png]


[Failed to download image : http://192.168.0.10:8086/QBM/2019/1/21/2123405759889408/2123723059576832/STEM/e555fb651e6b4d3f9aabd23a31a05280.png]
(1)请完成上面的列联表;
(2)根据列联表的数据,是否有 99.9% 的把握认为“成绩与班级有关系”.
参考公式与临界值表:

[Failed to download image : http://192.168.0.10:8086/QBM/2019/1/21/2123405759889408/2123723059576832/STEM/6b24c60b17f044df9a19c7fe53434d26.png]
某个调查小组在对人们的休闲方式的一次调查中,共调查了150人,其中男性45人,女性55人.女性中有35人主要的休闲方式是室内活动,另外20人主要的休闲方式是室外运动;男性中15人主要的休闲方式是室内活动,另外30人主要的休闲方式是室外运动.
参考数据:
(1)根据以上数据建立一个
的列联表;
(2)能否在犯错误的概率不超过0.005的前提下认为休闲方式与性别有关?
参考数据:

![]() | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(1)根据以上数据建立一个

(2)能否在犯错误的概率不超过0.005的前提下认为休闲方式与性别有关?
某企业生产了一种新产品,在推广期邀请了100位客户试用该产品,每人一台.试用一个月之后进行回访,由客户先对产品性能作出“满意”或“不满意”的评价,再让客户决定是否购买该试用产品(不购买则可以免费退货,购买则仅需付成本价).经统计,决定退货的客户人数是总人数的一半,“对性能满意”的客户比“对性能不满意”的客户多10人,“对性能不满意”的客户中恰有
选择了退货.
(1)请完成下面的
列联表,并判断是否有
的把握认为“客户购买产品与对产品性能满意之间有关”.
(2)企业为了改进产品性能,现从“对性能不满意”的客户中按是否购买产品进行分层抽样,随机抽取6位客户进行座谈.座谈后安排了抽奖环节,共有4张奖券,奖券上分别印有200元、400元、600元和800元字样,抽到奖券可获得相应奖金.6位客户有放回的进行抽取,每人随机抽取一张奖券,求6位客户中购买产品的客户人均所得奖金不少于500元的概率.
附:
,其中

(1)请完成下面的


| 对性能满意 | 对性能不满意 | 合计 |
购买产品 | | | |
不购买产品 | | | |
合计 | | | |
(2)企业为了改进产品性能,现从“对性能不满意”的客户中按是否购买产品进行分层抽样,随机抽取6位客户进行座谈.座谈后安排了抽奖环节,共有4张奖券,奖券上分别印有200元、400元、600元和800元字样,抽到奖券可获得相应奖金.6位客户有放回的进行抽取,每人随机抽取一张奖券,求6位客户中购买产品的客户人均所得奖金不少于500元的概率.
附:


![]() | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |