刷题首页
题库
高中数学
题干
高铁、网购、移动支付和共享单车被誉为中国的“新四大发明”,彰显出中国式创新的强劲活力.某移动支付公司从我市移动支付用户中随机抽取100名进行调查,得到如下数据:
每周移动支付次数
1次
2次
3次
4次
5次
6次及以上
男
10
8
7
3
2
15
女
5
4
6
4
6
30
合计
15
12
13
7
8
45
(1)把每周使用移动支付超过3次的用户称为“移动支付活跃用户”,由以上数据完成下列2×2列联表,并判断能否在犯错误的概率不超过0.005的前提下,认为“移动支付活跃用户”与性别有关?
移动支付活跃用户
非移动支付活跃用户
总计
男
女
总计
100
(2)把每周使用移动支付6次及6次以上的用户称为“移动支付达人”,视频率为概率,在我市所有“移动支付达人”中,随机抽取4名用户.为了鼓励男性用户使用移动支付,对抽出的男“移动支付达人”每人奖励300元,记奖励总金额为
,求
的分布列及数学期望.
附公式及表如下:
0.15
0.10
0.05
0.025
0.010
0.005
0.001
2.072
2.706
3.841
5.024
6.635
7.879
10.828
上一题
下一题
0.99难度 解答题 更新时间:2018-07-28 11:10:25
答案(点此获取答案解析)
同类题1
教育学家分析发现加强语文乐队理解训练与提高数学应用题得分率有关,某校兴趣小组为了验证这个结论,从该校选择甲乙两个同轨班级进行试验,其中甲班加强阅读理解训练,乙班常规教学无额外训练,一段时间后进行数学应用题测试,统计数据情况如下面的
列联表(单位:人)
(1)能够据此判断有97.5%把握热内加强语文阅读训练与提高数学应用题得分率有关?
(2)经过多次测试后,小明正确解答一道数学应用题所用的时间在5—7分钟,小刚正确解得一道数学应用题所用的时间在6—8分钟,现小明、小刚同时独立解答同一道数学应用题,求小刚比小明现正确解答完的概率;
(3)现从乙班成绩优秀的8名同学中任意抽取两人,并对他们点答题情况进行全程研究,记A、B两人中被抽到的人数为X,求X的分布列及数学期望E(X).
同类题2
中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”.为了了解人们对“延迟退休年龄政策”的态度,责成人社部进行调研.人社部从网上年龄在15~65岁的人群中随机调查100人,调查数据的频率分布直方图如图所示, 支持“延迟退休年龄政策”的人数与年龄的统计结果如表:
年龄(岁)
支持“延迟退休年龄政策”人数
15
5
15
28
17
(I)由以上统计数据填写下面的
列联表;
年龄低于45岁的人数
年龄不低于45岁的人数
总计
支持
不支持
总计
(II)通过计算判断是否有
的把握认为以45岁为分界点的不同人群对“延迟退休年龄政策”的态度有差异.
0.100
0.050
0.010
0.001
2.706
3.841
6.635
10.828
参考公式:
同类题3
为了解某班学生喜爱打篮球是否与性别有关,对该班40名学生进行了问卷调查,得到了如下的
列联表:
男生
女生
总计
喜爱打篮球
19
15
34
不喜爱打篮球
1
5
6
总计
20
20
40
(1)在女生不喜爱打篮球的5个个体中,随机抽取2人,求女生甲被选中的概率;
(2)判断能否在犯错误的概率不超过
的条件下认为喜爱篮球与性别有关?
附:
,其中
.
0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001
0.455
0.708
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.828
同类题4
化为推出一款6寸大屏手机,现对500名该手机使用者(200名女性,300名男性)进行调查,对手机进行打分,打分的频数分布表如下:
女性用户:
分值区间
频数
20
40
80
50
10
男性用户:
分值区间
频数
45
75
90
60
30
(1)如果评分不低于70分,就表示该用户对手机“认可”,否则就表示“不认可”,完成下列
列联表,并回答是否有
的把握认为性别对手机的“认可”有关:
女性用户
男性用户
合计
“认可”手机
“不认可”手机
合计
附:
0.05
0.01
3.841
6.635
(2)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意抽取2名用户,求2名用户中评分小于90分的概率.
同类题5
为了解学生喜欢校内、校外开展活动的情况,某中学一课外活动小组在学校高一年级进行了问卷调查,问卷共
道题,每题
分,总分
分,该课外活动小组随机抽取了
名学生的问卷成绩(单位:分)进行统计,将数据按
,
,
,
,
分成五组,绘制的频率分布直方图如图所示,若将不低于
分的称为
类学生,低于
分的称为
类学生.
(1)根据已知条件完成下面
列联表,能否在犯错误的概率不超过
的前提下认为性别与是否为
类学生有关系?
类
类
合计
男
女
合计
(2)将频率视为概率,现在从该校高一学生中用随机抽样的方法每次抽取
人,共抽取
次,记被抽取的
人中
类学生的人数为
,若每次抽取的结果是相互独立的,其
的分布列、期望
和方差
.
参考公式:
,其中
.
参考临界值:
相关知识点
计数原理与概率统计
统计案例
独立性检验
完善列联表
利用二项分布求分布列
二项分布的均值