- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 列联表
- 完善列联表
- 列联表分析
- 等高条形图
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为调查了解某高等院校毕业生参加工作后,从事对工作与大学所学专业是否专业对口,该校随机调查了80位该校2015年毕业的大学生,得到具体数据如下表:

(1)能否在犯错误的概率不超过
的前提下,认为“毕业生从事的工作与大学所学专业对口与性别有关?”
参考公式:
附表:

(2)求这80位毕业生从事的工作与大学所学专业对口的概率,并估计该校近3年毕业的2000名大学生总从事的工作与大学所学专业对口的人数;
(3)若从工作与所学专业不对口的15人中选出男生甲、乙,女生对丙、丁,让他们两两进行一次10分钟的职业交流,该校宣传部对每次交流都一一进行视频记录,然后随机选取一次交流视频上传到学校的网站,试求选取的视频恰为异性交流视频的概率.

(1)能否在犯错误的概率不超过

参考公式:

附表:

(2)求这80位毕业生从事的工作与大学所学专业对口的概率,并估计该校近3年毕业的2000名大学生总从事的工作与大学所学专业对口的人数;
(3)若从工作与所学专业不对口的15人中选出男生甲、乙,女生对丙、丁,让他们两两进行一次10分钟的职业交流,该校宣传部对每次交流都一一进行视频记录,然后随机选取一次交流视频上传到学校的网站,试求选取的视频恰为异性交流视频的概率.
为了调查某生产线上质量监督员甲是否在现场对产品质量好坏有无影响,现统计数据如下:质量监督员甲在现场时,1 000件产品中合格品有990件,次品有10件,甲不在现场时,500件产品中有合格品490件,次品有10件.
(1)补充下面列联表,并初步判断甲在不在现场与产品质量是否有关:
(2)用独立性检验的方法判断能否在犯错误的概率不超过0.15的前提下认为“甲在不在现场与产品质量有关”?

(1)补充下面列联表,并初步判断甲在不在现场与产品质量是否有关:
| 合格品数/件 | 次品数/件 | 总数/件 |
甲在现场 | 990 | | |
甲不在现场 | | 10 | |
总数/件 | | | |
(2)用独立性检验的方法判断能否在犯错误的概率不超过0.15的前提下认为“甲在不在现场与产品质量有关”?
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
K | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |

目前,学案导学模式已经成为教学中不可或缺的一部分,为了了解学案的合理使用是否对学生的期末复习有着重要的影响某校随机抽取200名学生,对学习成绩和学案使用程度进行了调查,统计数据如下表所示:
已知随机抽查这200名学生中的一名学生,抽到善于使用学案的学生概率是0.6.
参考公式:
,其中
.
(I)完成
列联表(不用写计算过程);
(Ⅱ)试运用独立性检验的思想方法分析有多大的把握认为学生的学习成绩与对待学案的使用态度有关?
| 善于使用学案 | 不善于使用学案 | 合计 |
学习成绩优秀 | 40 | | |
学习成绩一般 | | 30 | |
合计 | | | 200 |
已知随机抽查这200名学生中的一名学生,抽到善于使用学案的学生概率是0.6.
参考公式:


![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(I)完成

(Ⅱ)试运用独立性检验的思想方法分析有多大的把握认为学生的学习成绩与对待学案的使用态度有关?
某学校课题组为了研究学生的数学成绩与学生细心程度的关系,在本校随机调查了100名学生进行研究.研究结果表明:在数学成绩及格的60名学生中有45人比较细心,另外15人比较粗心;在数学成绩不及格的40名学生中有10人比较细心,另外30人比较粗心.
(I)试根据上述数据完成
列联表:

(II)能否在犯错误的概率不超过0.001的前提下认为学生的数学成绩与细心程度有关系?
参考公式:
,其中
.
(I)试根据上述数据完成


(II)能否在犯错误的概率不超过0.001的前提下认为学生的数学成绩与细心程度有关系?
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:


中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”.为了了解人们对“延迟退休年龄政策”的态度,责成人社部进行调研.人社部从网上年龄在15~65岁的人群中随机调查100人,调查数据的频率分布直方图如图所示, 支持“延迟退休年龄政策”的人数与年龄的统计结果如表:

(I)由以上统计数据填写下面的
列联表;
(II)通过计算判断是否有
的把握认为以45岁为分界点的不同人群对“延迟退休年龄政策”的态度有差异.
参考公式:

年龄(岁) | ![]() | ![]() | ![]() | ![]() | ![]() |
支持“延迟退休年龄政策”人数 | 15 | 5 | 15 | 28 | 17 |
(I)由以上统计数据填写下面的

| 年龄低于45岁的人数 | 年龄不低于45岁的人数 | 总计 |
支持 | | | |
不支持 | | | |
总计 | | | |
(II)通过计算判断是否有

![]() | 0.100 | 0.050 | 0.010 | 0.001 |
![]() | 2.706 | 3.841 | 6.635 | 10.828 |
参考公式:

某工科院校对A、B两个专业的男、女生人数进行调查统计,得到以下表格:
如果认为工科院校中“性别”与“专业”有关,那么犯错误的概率不会超过( )
注:
| 专业A | 专业B | 合计 |
女生 | 12 | | |
男生 | | 46 | 84 |
合计 | 50 | | 100 |
如果认为工科院校中“性别”与“专业”有关,那么犯错误的概率不会超过( )
注:

P(x2≥k) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
A.0.005 | B.0.01 | C.0.025 | D.0.05 |
为了解某班学生喜爱打篮球是否与性别有关,对本班45人进行了问卷调查得到了如下的列联表:
已知在全部45人中随机抽取1人,是男同学的概率为
(1)请将上面的列联表补充完整;
(2)是否有
的把握认为喜爱打篮球与性别有关,请说明理由。
附参考公式:
| 喜爱打篮球 | 不喜爱打篮球 | 合计 |
男生 | | 5 | |
女生 | 5 | | |
合计 | | | 45 |
已知在全部45人中随机抽取1人,是男同学的概率为

(1)请将上面的列联表补充完整;
(2)是否有

附参考公式:

![]() | 0.15 | 0,10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
高铁、网购、移动支付和共享单车被誉为中国的“新四大发明”,彰显出中国式创新的强劲活力.某移动支付公司从我市移动支付用户中随机抽取100名进行调查,得到如下数据:
(1)把每周使用移动支付6次及6次以上的用户称为“移动支付达人”,按分层抽样的方法,在我市所有“移动支付达人”中,随机抽取6名用户
①求抽取的6名用户中,男女用户各多少人;
②从这6名用户中抽取2人,求既有男“移动支付达人”又有女“移动支付达人”的概率
(2)把每周使用移动支付超过3次的用户称为“移动支付活跃用户”,填写下表,问能否在犯错误概率不超过0.01的前提下,认为“移动支付活跃用户”与性别有关?
附:
每周移动支付次数 | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 10 | 8 | 7 | 3 | 2 | 15 |
女 | 5 | 4 | 6 | 4 | 6 | 30 |
合计 | 15 | 12 | 13 | 7 | 8 | 45 |
(1)把每周使用移动支付6次及6次以上的用户称为“移动支付达人”,按分层抽样的方法,在我市所有“移动支付达人”中,随机抽取6名用户
①求抽取的6名用户中,男女用户各多少人;
②从这6名用户中抽取2人,求既有男“移动支付达人”又有女“移动支付达人”的概率
(2)把每周使用移动支付超过3次的用户称为“移动支付活跃用户”,填写下表,问能否在犯错误概率不超过0.01的前提下,认为“移动支付活跃用户”与性别有关?
| 非移动支付活跃用户 | 移动支付活跃用户 | 合计 |
男 | | | |
女 | | | |
合计 | | | |
附:

![]() | 0.100 | 0.050 | 0.010 |
![]() | 2.706 | 3.841 | 6.635 |
某医院治疗白血病有甲、乙两套方案,现就70名患者治疗后复发的情况进行了统计,得到其等高条形图如图所示(其中采用甲、乙两种治疗方案的患者人数之比为
.

(1)补充完整
列联表中的数据,并判断是否有
把握认为甲乙两套治疗方案对患者白血病复发有影响;
(2)为改进“甲方案”,按分层抽样组成了由5名患者构成的样本,求随机抽取2名患者恰好是复发患者和未复发患者各1名的概率.
附:
,
.


(1)补充完整


| 复发 | 未复发 | 总计 |
甲方案 | | | |
乙方案 | 2 | | |
总计 | | | 70 |
(2)为改进“甲方案”,按分层抽样组成了由5名患者构成的样本,求随机抽取2名患者恰好是复发患者和未复发患者各1名的概率.
附:
![]() | 0.05 | 0.01 | 0.005 | 0.001 |
![]() | 3.841 | 6.635 | 7.879 | 10.828 |


“中国式过马路”存在很大的交通安全隐患,某调查机构为了解路人对“中国式过马路”的态度是否与性别有关,从马路旁随机抽取30名路人进行了问卷调查,得到了如图的
列联表.已知在这30人中随机抽取1人抽到反感“中国式过马路”的路人的概率是
.
(1)求
列联表中的
的值;并完成
列联表;
(2)根据列联表中的数据,判断是否有
把握认为反感“中国式过马路”与性别有关?
参考公式:
,
临界值表:


(1)求



(2)根据列联表中的数据,判断是否有

参考公式:


| 男性 | 女性 | 合计 |
反感 | 10 | ![]() | |
不反感 | ![]() | 8 | |
合计 | | | 30 |
临界值表:
![]() | 0.400 | 0.250 | 0.150 | 0.100 | 0.050 | 0.025 |
![]() | 0.780 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |