- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 列联表
- 完善列联表
- 列联表分析
- 等高条形图
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
国家规定,疫苗在上市前必须经过严格的检测,并通过临床实验获得相关数据,以保证疫苗使用的安全和有效.某生物制品硏究所将某一型号疫苗用在动物小白鼠身上进行科研和临床实验,得到统计数据如下:
现从未注射疫苗的小白鼠中任取1只,取到“感染病毒”的小白鼠的概率为
.
(1)求
列联表中的数据p,q,
,
的值;
(2)能否有
把握认为注射此种疫苗有效?
(3)在感染病毒的小白鼠中,按未注射疫苗和注射疫苗的比例抽取5只进行病例分析,然后从这五只小白鼠中随机抽取3只对注射疫苗情况进行核实,求至少抽到2只为未注射疫苗的小白鼠的概率. 附:
.
| 未感染病毒 | 感染病毒 | 总计 |
未注射疫苗 | 40 | p | x |
注射疫苗 | 60 | q | y |
总计 | 100 | 100 | 200 |
现从未注射疫苗的小白鼠中任取1只,取到“感染病毒”的小白鼠的概率为

(1)求



(2)能否有

(3)在感染病毒的小白鼠中,按未注射疫苗和注射疫苗的比例抽取5只进行病例分析,然后从这五只小白鼠中随机抽取3只对注射疫苗情况进行核实,求至少抽到2只为未注射疫苗的小白鼠的概率. 附:

![]() | 0.05 | 0.01 | 0.005 | 0.001 |
![]() | 3.841 | 6.635 | 7.879 | 10.828 |
国际奥委会将于2017年9月15日在秘鲁利马召开130次会议决定2024年第33届奥运会举办地,目前德国汉堡,美国波士顿等申办城市因市民担心赛事费用超支而相继退出,某机构为调查我国公民对申办奥运会的态度,选了某小区的100位居民调查结果统计如下:
(1)根据已知数据,把表格数据填写完整;
(2)能否在犯错误的概率不超过5%的前提下认为不同年龄与支持申办奥运有关?
(3)已知在被调查的年龄大于50岁的支持者中有5名女性,其中2位是女教师,现从这5名女性中随机抽取3人,求至多有1位教师的概率.
附:
,
,
| 支持 | 不支持 | 合计 |
年龄不大于50岁 | | | 80 |
年龄大于50岁 | 10 | | |
合计 | | 70 | 100 |
(1)根据已知数据,把表格数据填写完整;
(2)能否在犯错误的概率不超过5%的前提下认为不同年龄与支持申办奥运有关?
(3)已知在被调查的年龄大于50岁的支持者中有5名女性,其中2位是女教师,现从这5名女性中随机抽取3人,求至多有1位教师的概率.
附:


![]() | 0.100 | 0.050 | 0.025 | 0.010 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 |
针对某地区的一种传染病与饮用水进行抽样调查发现:饮用干净水得病5人,不得病50人;饮用不干净水得病9人,不得病22人。
(1)作出2×2列联表
(2)能否有90%的把握认为该地区中得传染病与饮用水有关?
(1)作出2×2列联表
(2)能否有90%的把握认为该地区中得传染病与饮用水有关?
![]() | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
某食品厂为了检查甲乙两条自动包装流水线的生产情况,随机在这两条流水线上各抽取
件产品作为样本称出它们的重量(单位:克),重量值落在
的产品为合格品,否则为不合格品.表
是甲流水线样本频数分布表,如图是乙流水线样本的频率分布直方图.
表
:甲流水线样本频数分布表

(1)根据上表数据在答题卡上作出甲流水线样本的频率分布直方图;
(2)若以频率作为概率,试估计从两条流水线分别任取
件产品,该产品恰好是合格品的概率分别是多少;(3)由以上统计数据完成下面
列联表,并回答有多大的把握认为“产品的包装质量与两条自动包装流水线的选择有关”.

参考公式:
其中
临界值表供参考:




表


(1)根据上表数据在答题卡上作出甲流水线样本的频率分布直方图;
(2)若以频率作为概率,试估计从两条流水线分别任取



参考公式:




某社区为了解居民参加体育锻炼情况,随机抽取18名男性居民,12名女性居民对他们参加体育锻炼的情况进行问卷调查.现按参加体育锻炼的情况将居民分成3类:甲类(不参加体育锻炼),乙类(参加体育锻炼,但平均每周参加体育锻炼的时间不超过5个小时),丙类(参加体育锻炼,且平均每周参加体育锻炼的时间超过5个小时),调查结果如下表:

(1)根据表中的统计数据,完成下面列联表,并判断是否有
的把握认为参加体育锻炼与否与性别有关?

(2)从抽出的女性居民中再随机抽取2人进一步了解情况,求所抽取的2人中乙类,丙类各有1人的概率.
附:

(1)根据表中的统计数据,完成下面列联表,并判断是否有


(2)从抽出的女性居民中再随机抽取2人进一步了解情况,求所抽取的2人中乙类,丙类各有1人的概率.
附:

![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() |
每年圣诞节,各地的餐馆都出现了用餐需预定的现象,致使--些人在没有预定的情况下难以找到用餐的餐馆,针对这种现象,专家对人们“用餐地点"以及“性别”作出调查,得到的情况如下表所示:
(1)完成上述
列联表;
(2)根据表中的数据,试通过计算判断是否有
的把握说明“用餐地点”与“性别"有关;
(3)若在接受调查的所有人男性中按照“用餐地点”进行分层抽样,随机抽取
人,再在
人中抽取
人赠送餐馆用餐券,记收到餐馆用餐券的男性中在餐馆用餐的人数为
,求
的分布列和数学期望.
附:

| 在家用餐 | 在餐馆用餐 | 总计 |
女性 | | ![]() | |
男性 | ![]() | | |
总计 | ![]() | | ![]() |
(1)完成上述

(2)根据表中的数据,试通过计算判断是否有

(3)若在接受调查的所有人男性中按照“用餐地点”进行分层抽样,随机抽取





附:
![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |

2019年3月5日至3月15日在北京召开了“两会”,代表们都递交了很多关于国计民生问题的提案,某媒体为了解民众对“两会”关注程度,随机抽取了年龄在18-75岁之间的100人进行调查,经统计“45岁(含)以下”与“45岁以上”的人数之比为
,并绘制如下列联表:
(1)根据已知条件完成上面的列联表,并判断能否有
的把握认为关注“两会”和年龄段有关?
(2)现从关注“两会”的民众中采用分层抽样的办法选取6人对“两会”有关内容问卷调查,再在这6人中选3人进行面对面提问,求至少有一个45岁以上的人参加面对面提问的概率;
(3)小张从“两会”中关注到中国的政策红利,看好中国经济的发展,在2019年3月某日将股市里的10万元分成4万元,3万元,3万元分别购买了三支股票
,
,
,其中
涨幅
,
涨幅
,
涨幅
,求小张当天从股市中享受到的红利(元).
附:
,其中
.
临界值表:

| 关注 | 不关注 | 合计 |
45岁(含)以下 | 50 | | |
45岁以上 | | 15 | |
合计 | 75 | | 100 |
(1)根据已知条件完成上面的列联表,并判断能否有

(2)现从关注“两会”的民众中采用分层抽样的办法选取6人对“两会”有关内容问卷调查,再在这6人中选3人进行面对面提问,求至少有一个45岁以上的人参加面对面提问的概率;
(3)小张从“两会”中关注到中国的政策红利,看好中国经济的发展,在2019年3月某日将股市里的10万元分成4万元,3万元,3万元分别购买了三支股票









附:


临界值表:

为了进一步提升基层党员自身理论素养,市委组织部举办了党建主题知识竞赛,从参加竞赛的党员中采用分层抽样的方法抽取若干名党员,统计他们的竞赛成绩得到下面频率分布表:
已知成绩在区间
内的有
人.
(1)将成绩在
内的定义为“优秀”,在
内的定义为“良好”,请将
列联表补充完整.
(2)判断是否有
的把握认为竞赛成绩是否优秀与性别有关?
(3)若在抽取的竞赛成绩为优秀的党员中任意抽取2人进行党建知识宣讲,求被抽取的这两人成绩都在
内的概率.
附:
成绩/分 | ![]() | ![]() | ![]() | ![]() | ![]() |
频率 | 0.1 | 0.3 | 0.3 | 0.2 | 0.1 |
已知成绩在区间


(1)将成绩在



| 男党员 | 女党员 | 合计 |
优秀 | | | |
良好 | | 15 | |
合计 | | 25 | |
(2)判断是否有

(3)若在抽取的竞赛成绩为优秀的党员中任意抽取2人进行党建知识宣讲,求被抽取的这两人成绩都在

附:

![]() | 0.050 | 0.010 | 0.001 |
![]() | 3.841 | 6.635 | 10.828 |
随着手机的发展,“微信”逐渐成为人们支付购物的一种形式.某机构对“使用微信支付”的态度进行调查,随机抽取了50人,他们年龄的频数分布及对“使用微信支付”赞成人数如下表.
(Ⅰ)若以“年龄45岁为分界点”,由以上统计数据完成下面
列联表,并判断是否有99%的把握认为“使用微信支付”的态度与人的年龄有关;
(Ⅱ)若从年龄在
的被调查人中按照赞成与不赞成分层抽样,抽取5人进行追踪调查,在5人中抽取3人做专访,求3人中不赞成使用微信支付的人数的分布列和期望值.
参考数据:
,其中
.
年龄 (单位:岁) | ![]() ![]() | ![]() ![]() | ![]() ![]() | ![]() ![]() | ![]() ![]() | ![]() ![]() |
频数 | 5 | 10 | 15 | 10 | 5 | 5 |
赞成人数 | 5 | 10 | 12 | 7 | 2 | 1 |
(Ⅰ)若以“年龄45岁为分界点”,由以上统计数据完成下面

| 年龄不低于45岁的人数 | 年龄低于45岁的人数 | 合计 |
赞成 | | | |
不赞成 | | | |
合计 | | | |
(Ⅱ)若从年龄在

参考数据:
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |


某企业共有员工10000人,如图是通过随机抽样得到的该企业部分员工年收入(单位:万元)频率分布直方图

(1)根据频率分布直方图估算该企业全体员工中年收入在
的人数;
(2)若抽样调查中收入在
万元员工有2人,求在收入在
万元的员工中任取3人,恰有2位员工收入在
万元的概率;
(3)若抽样调查的样本容量是400人,在这400人中,年收入在
万元的员工中具有大学及大学以上学历的有40%,收入在
万元的员工中不具有大学及大学以上学历的有30%,具有大学及大学以上学历和不具有大学及大学以上学历的员工人数填入答卷中的列联表,并判断能否有99%把握认为具有大学及大学以上学历和不具有大学及大学以上学历的员工收入有差异?
附:


(1)根据频率分布直方图估算该企业全体员工中年收入在

(2)若抽样调查中收入在



(3)若抽样调查的样本容量是400人,在这400人中,年收入在


附:

