- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 列联表
- 完善列联表
- 列联表分析
- 等高条形图
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
现在的人基本每天都离不开手机,许多人手机一旦不在身边就不舒服,几乎达到手机二十四小时不离身,这类人群被称为“手机控”,这一群体在大学生中比较突出.为了调查大学生每天使用手机的时间,某调查公司针对某高校男生、女生各25名学生进行了调查,其中每天使用手机时间超过8小时的被称为:“手机控”,否则被称为“非手机控”.调查结果如下:
(1)将上面的列联表补充完整,再判断是否有99.5%的把握认为“手机控”与性别有关,说明你的理由;
(2)现从被调查的男生中按分层抽样的方法选出5人,再从这5人中随机选取3人参加座谈会,记这3人中“手机控”的人数为
,试求
的分布列与数学期望.
参考公式:
,其中
.
| 手机控 | 非手机控 | 合计 |
女生 | | 5 | |
男生 | 10 | | |
合计 | | | 50 |
(1)将上面的列联表补充完整,再判断是否有99.5%的把握认为“手机控”与性别有关,说明你的理由;
(2)现从被调查的男生中按分层抽样的方法选出5人,再从这5人中随机选取3人参加座谈会,记这3人中“手机控”的人数为


参考公式:


为研究患肺癌与是否吸烟有关,某肿瘤机构随机抽取了40人做相关调查,其中不吸烟人数与吸烟人数相同,已知吸烟人数中,患肺癌与不患肺癌的比为
;不吸烟的人数中,患肺癌与不患肺癌的比为
.
(1)现从患肺癌的人中用分层抽样的方法抽取5人,再从这5人中随机抽取2人进行调查,求这两人都是吸烟患肺癌的概率;
(2)是否有99.9%的把握认为患肺癌与吸烟有关?
附:
,其中
.


(1)现从患肺癌的人中用分层抽样的方法抽取5人,再从这5人中随机抽取2人进行调查,求这两人都是吸烟患肺癌的概率;
(2)是否有99.9%的把握认为患肺癌与吸烟有关?
附:


![]() | 0.100 | 0.050 | 0.010 | 0.001 |
![]() | 2.706 | 3.841 | 6.635 | 10.828 |
11月11日有2000名网购者在某购物网站进行网购消费(金额不超过1000元),其中女性1100名,男性900名.该购物网站为优化营销策略,根据性别采用分层抽样的方法从这2000名网购者中抽取200名进行分析,如表.(消费金额单位:元)

(1)计算
的值,在抽出的200名且消费金额在
的网购者中随机抽出2名发放网购红包,求选出的2人均为女性的概率;
(2)若消费金额不低于600元的网购者为“网购达人”,低于600元的网购者为“非网购达人”,根据以上数据列
列联表,并回答能否有
的把握认为“是否为网购达人与性别有关?”附:
,


(1)计算


(2)若消费金额不低于600元的网购者为“网购达人”,低于600元的网购者为“非网购达人”,根据以上数据列





某老师对全班
名学生学习积极性和参加社团活动情况进行调查,统计数据如下所示:
(1)请把表格数据补充完整;
(2)若从不参加社团活动的
人按照分层抽样的方法选取
人,再从所选出的
人中随机选取两人作为代表发言,求至少有一个学习积极性高的概率;
(3)运用独立性检验的思想方法分析:请你判断是否有
的把握认为学生的学习积极性与参与社团活动由关系?
附:

| 参加社团活动 | 不参加社团活动 | 合计 |
学习积极性高 | | | ![]() |
学习积极性一般 | ![]() | | |
合计 | | ![]() | ![]() |
(1)请把表格数据补充完整;
(2)若从不参加社团活动的



(3)运用独立性检验的思想方法分析:请你判断是否有

附:

![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |
为了打好脱贫攻坚战,某贫困县农科院针对玉米种植情况进行调研,力争有效地改良玉米品种,为农民提供技术支援.现对已选出的一组玉米的茎高进行统计,获得茎叶图如图(单位:厘米),设茎高大于或等于
厘米的玉米为高茎玉米,否则为矮茎玉米

(1)完成
列联表,并判断是否可以在犯错误概率不超过
的前提下,认为抗倒伏与玉米矮茎有关?
(2)为了改良玉米品种,现采用分层抽样的方式从抗倒伏的玉米中抽出
株,再从这
株玉米中选取
株进行杂交实验,选取的植株均为矮茎的概率是多少?
(
,其中
)


(1)完成


(2)为了改良玉米品种,现采用分层抽样的方式从抗倒伏的玉米中抽出



![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(


为了增强消防安全意识,某中学对全体学生做了一次消防知识讲座,从男生中随机抽取50人,从女生中随机抽取70人参加消防知识测试,统计数据得到如下列联表:
(Ⅰ)试判断是否有
的把握认为消防知识的测试成绩优秀与否与性别有关;
附:
K2=
(Ⅱ)为了宣传消防安全知识,从该校测试成绩获得优秀的同学中采用分层抽样的方法,随机选出6名组成宣传小组,现从这6人中随机抽取2名到校外宣传,求到校外宣传的同学中至少有1名是男生的概率.
| 优秀 | 非优秀 | 总计 |
男生 | 15 | 35 | 50 |
女生 | 30 | 40 | 70 |
总计 | 45 | 75 | 120 |
(Ⅰ)试判断是否有

附:
K2=

![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(Ⅱ)为了宣传消防安全知识,从该校测试成绩获得优秀的同学中采用分层抽样的方法,随机选出6名组成宣传小组,现从这6人中随机抽取2名到校外宣传,求到校外宣传的同学中至少有1名是男生的概率.
已知某班的50名学生进行不记名问卷调查,内容为本周使用手机的时间长,如表:
(1)求这50名学生本周使用手机的平均时间长;
(2)时间长为
的7名同学中,从中抽取两名,求其中恰有一个女生的概率;
(3)若时间长为
被认定“不依赖手机”,
被认定“依赖手机”,根据以上数据完成
列联表:
能否在犯错概率不超过0.15的前提下,认为学生的性别与依赖手机有关系?
(参考公式:
,
)
时间长(小时) | ![]() | ![]() | ![]() | ![]() | ![]() |
女生人数 | 4 | 11 | 3 | 2 | 0 |
男生人数 | 3 | 17 | 6 | 3 | 1 |
(1)求这50名学生本周使用手机的平均时间长;
(2)时间长为

(3)若时间长为



| 不依赖手机 | 依赖手机 | 总计 |
女生 | | | |
男生 | | | |
总计 | | | |
能否在犯错概率不超过0.15的前提下,认为学生的性别与依赖手机有关系?
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:


某中学为研究学生的身体素质与与课外体育锻炼时间的关系,对该校200名高三学生的课外体育锻炼平均每天运动的时间进行调查,如下表:(平均每天锻炼的时间单位:分钟)
将学生日均课外体育运动时间在
上的学生评价为“课外体育达标”.
请根据上述表格中的统计数据填写下面
列联表,并通过计算判断是否能在犯错误的概率不超过
的前提下认为“课外体育达标”与性别有关?
从上述200名学生中,按“课外体育达标”、“课外体育不达标”分层抽样,抽取4人得到一个样本,再从这个样本中抽取2人,求恰好抽到一名“课外体育不达标”学生的概率.
参考公式:
,其中
.
参考数据:
将学生日均课外体育运动时间在

平均每天锻炼的时间(分钟) | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
总人数 | 20 | 36 | 44 | 50 | 40 | 10 |
请根据上述表格中的统计数据填写下面


| 课外体育不达标 | 课外体育达标 | 合计 |
男 | | | |
女 | | 20 | 110 |
合计 | | | |
从上述200名学生中,按“课外体育达标”、“课外体育不达标”分层抽样,抽取4人得到一个样本,再从这个样本中抽取2人,求恰好抽到一名“课外体育不达标”学生的概率.
参考公式:


参考数据:
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
空气质量主要受污染物排放量及大气扩散等因素的影响,某市环保监测站2014年10月连续10天(从左到右对应1号至10号)采集该市某地平均风速及空气中氧化物的日均浓度数据,制成散点图如图所示.

(Ⅰ)同学甲从这10天中随机抽取连续5天的一组数据,计算回归直线方程.试求连续5天的一组数据中恰好同时包含氧化物日均浓度最大与最小值的概率;
(Ⅱ)现有30名学生,每人任取5天数据,对应计算出30个不同的回归直线方程.已知30组数据中有包含氧化物日均浓度最值的有14组.现采用这30个回归方程对某一天平均风速下的氧化物日均浓度进行预测,若预测值与实测值差的绝对值小于2,则称之为“拟合效果好”,否则为“拟合效果不好”.根据以上信息完成下列2×2联表,并分析是否有95%以上的把握说拟合效果与选取数据是否包含氧化物日均浓度最值有关.
参考数据:
(其中
).

(Ⅰ)同学甲从这10天中随机抽取连续5天的一组数据,计算回归直线方程.试求连续5天的一组数据中恰好同时包含氧化物日均浓度最大与最小值的概率;
(Ⅱ)现有30名学生,每人任取5天数据,对应计算出30个不同的回归直线方程.已知30组数据中有包含氧化物日均浓度最值的有14组.现采用这30个回归方程对某一天平均风速下的氧化物日均浓度进行预测,若预测值与实测值差的绝对值小于2,则称之为“拟合效果好”,否则为“拟合效果不好”.根据以上信息完成下列2×2联表,并分析是否有95%以上的把握说拟合效果与选取数据是否包含氧化物日均浓度最值有关.
| 预测效果好 | 拟合效果不好 | 合计 |
数据有包含最值 | 5 | | |
数据无包含最值 | | 4 | |
合计 | | | |
参考数据:
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |


为了调查学生数学学习的质量情况,某校从高二年级学生(其中男生与女生的人数之比为
)中,采用分层抽样的方法抽取
名学生依期中考试的数学成绩进行统计.根据数学的分数取得了这
名同学的数据,按照以下区间分为八组:
①
,②
,③
,④
,⑤
,⑥
,⑦
,⑧
得到频率分布直方图如图所示.已知抽取的学生中数学成绩少于
分的人数为
人.

(1)求
的值及频率分布直方图中第④组矩形条的高度;
(2)如果把“学生数学成绩不低于
分”作为是否达标的标准,对抽取的
名学生,完成下列
列联表:

据此资料,你是否认为“学生性别”与“数学成绩达标与否”有关?
(3)若从该校的高二年级学生中随机抽取
人,记这
人中成绩不低于
分的学生人数为
,求
的分布列、数学期望和方差
附1:“
列联表
”的卡方统计量公式:
附2:卡方(
)统计量的概率分布表:



①








得到频率分布直方图如图所示.已知抽取的学生中数学成绩少于



(1)求

(2)如果把“学生数学成绩不低于




据此资料,你是否认为“学生性别”与“数学成绩达标与否”有关?
(3)若从该校的高二年级学生中随机抽取





附1:“



附2:卡方(

