- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 回归分析
- + 独立性检验
- 列联表
- 等高条形图
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点





| 支持 | 反对 | 合计 |
教师 | ![]() | ![]() | ![]() |
学生 | ![]() | ![]() | ![]() |
合计 | ![]() | ![]() | ![]() |
(1)根据以上数据,能否有


(2)现将这



(3)将上述调查所得到的频率视为概率,从




①求

②求



参考公式:


参考数据:
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(题文)某数学老师对所任教的两个班级各抽取30名学生进行测试,分数分布如下表:
(1)若成绩120分以上(含120分)为优秀,求从乙班参加测试的成绩在90分以上(含90分)的学生中,随机任取2名学生,恰有1人为优秀的概率;
(2)根据以上数据完成下面的2×2列联表,则犯错概率小于0.1的前提下,是否有足够的把握认为学生的数学成绩优秀与否和班级有关?
参考公式:
,其中
.
下面的临界值供参考:
(1)若成绩120分以上(含120分)为优秀,求从乙班参加测试的成绩在90分以上(含90分)的学生中,随机任取2名学生,恰有1人为优秀的概率;
(2)根据以上数据完成下面的2×2列联表,则犯错概率小于0.1的前提下,是否有足够的把握认为学生的数学成绩优秀与否和班级有关?
分数区间 | 4 | 5 |
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
| 优秀 | 不优秀 | 总计 |
甲班 | | | |
乙班 | | | |
总计 | | | |
参考公式:


下面的临界值供参考:

4月23日是世界读书日,为提高学生对读书的重视,让更多的人畅游于书海中,从而收获更多的知识,某高中的校学生会开展了主题为“让阅读成为习惯,让思考伴随人生”的实践活动,校学生会实践部的同学随即抽查了学校的40名高一学生,通过调查它们是喜爱读纸质书还是喜爱读电子书,来了解在校高一学生的读书习惯,得到如表列联表:
(Ⅰ)根据如表,能否有99%的把握认为是否喜欢读纸质书籍与性别有关系?
(Ⅱ)从被抽查的16名不喜欢读纸质书籍的学生中随机抽取2名学生,求抽到男生人数ξ的分布列及其数学期望E(ξ).
参考公式:K2=
,其中n=a+b+c+d.
下列的临界值表供参考:
| 喜欢读纸质书 | 不喜欢读纸质书 | 合计 |
男 | 16 | 4 | 20 |
女 | 8 | 12 | 20 |
合计 | 24 | 16 | 40 |
(Ⅰ)根据如表,能否有99%的把握认为是否喜欢读纸质书籍与性别有关系?
(Ⅱ)从被抽查的16名不喜欢读纸质书籍的学生中随机抽取2名学生,求抽到男生人数ξ的分布列及其数学期望E(ξ).
参考公式:K2=

下列的临界值表供参考:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
某学校为调查高三年学生的身高情况,按随机抽样的方法抽取
名学生,得到男生身高情况的频率分布直方图(图(1)和女生身高情况的频率分布直方图(图(2)).已知图(1)中身高在
~
的男生人数有
人.

(Ⅰ)试问在抽取的学生中,男、女生各有多少人?
(Ⅱ)根据频率分布直方图,完成下列的
列联表,并判断能有多大(百分几)的把握认为“身高与性别有关”?
(Ⅲ)在上述
名学生中,从身高在
~
之间的学生按男、女性别分层抽样的方法,抽出
人,从这
人中选派
人当旗手,求
人中恰好有一名女生的概率.
参考公式:
参考数据:





(Ⅰ)试问在抽取的学生中,男、女生各有多少人?
(Ⅱ)根据频率分布直方图,完成下列的

| ![]() | ![]() | 总计 |
男生身高 | | | |
女生身高 | | | |
总计 | | | |
(Ⅲ)在上述







参考公式:

参考数据:
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(题文)户外运动已经成为一种时尚运动,某公司为了了解员工喜欢户外运动是否与性别有关,决定从本公司全体650人中随机抽取50人进行问卷调查。
(1)通过对挑选的50人进行调查,得到了如下
列联表:
已知在这50人中随机挑选1人,此人喜欢户外运动的概率是0.6,请将
列联表补充完整,并估计该公司男、女员工各多少人;
(2)估计有多大的把握认为喜欢户外运动与性别有关,并说明你的理由;
(3)若用随机数表法从650人中抽取员工,现规定从随机数表(见附表)第2行第7列的数开始往右读,在最先挑出的5人中,任取2人,求取到男员工人数的数学期望。
附:

随机数表:
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54
(1)通过对挑选的50人进行调查,得到了如下

| 喜欢户外运动 | 不喜欢户外运动 | 合计 |
男员工 | | 5 | |
女员工 | 10 | | |
合计 | | | 50 |
已知在这50人中随机挑选1人,此人喜欢户外运动的概率是0.6,请将

(2)估计有多大的把握认为喜欢户外运动与性别有关,并说明你的理由;
(3)若用随机数表法从650人中抽取员工,现规定从随机数表(见附表)第2行第7列的数开始往右读,在最先挑出的5人中,任取2人,求取到男员工人数的数学期望。
附:
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |

随机数表:
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54
某课题组对全班45名同学的饮食习惯进行了一次调查,并用茎叶图表示45名同学的饮食指数,说明:下图中饮食指数低于70的人被认为喜食蔬菜,饮食指数不低于70的人被认为喜食肉类.

(1)根据茎叶图,完成下面
列联表,并判断是否有90%的把握认为喜食蔬菜还是喜食肉类与性别有关,说明理由;

(2)根据饮食指数在
,
,
进行分层抽样,从全班同学中抽取15名同学进一步调查,记抽取的喜食肉类的女同学为
,求
的分布列和数学期望
.

下面公式及临界值表仅供参考:

(1)根据茎叶图,完成下面


(2)根据饮食指数在







下面公式及临界值表仅供参考:

某课题组对全班45名同学的饮食习惯进行了一次调查,并用茎叶图表示45名同学的饮食指数,说明:下图中饮食指数低于70的人被认为喜食蔬菜,饮食指数不低于70的人被认为喜食肉类.

(1)求饮食指数在
女同学中选取2人,恰有1人在
中的概率;
(2)根据茎叶图,完成下面
列联表,并判断是否有90%的把握认为喜食蔬菜还是喜食肉类与性别有关,说明理由.

参考公式:
下面临界值表仅供参考:

(1)求饮食指数在


(2)根据茎叶图,完成下面


参考公式:

下面临界值表仅供参考:

户外运动已经成为一种时尚运动,某公司为了了解员工喜欢户外运动是否与性别有关,决定从本公司全体650人中随机抽取50人进行问卷调查.
(1)通过对挑选的50人进行调查,得到了如下
列联表:
已知在这50人中随机挑选1人,此人喜欢户外运动的概率是0.6,请将
列联表补充完整,并估计该公司男、女员工各多少人;
(2)估计有多大的把握认为喜欢户外运动与性别有关,并说明你的理由;
(3)若用随机数表法从650人中抽取员工,先将650人按000,001,…,649编号,恰好000~199号都为男员工,450~649号都为女员工,现规定从随机数表(见附表)第2行第7列的数开始往右读,在最先挑出的5人中,任取2人,求至少取到1位男员工的概率.
附:

随机数表:
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54
(1)通过对挑选的50人进行调查,得到了如下

| 喜欢户外运动 | 不喜欢户外运动 | 合计 |
男员工 | | 5 | |
女员工 | 10 | | |
合计 | | | 50 |
已知在这50人中随机挑选1人,此人喜欢户外运动的概率是0.6,请将

(2)估计有多大的把握认为喜欢户外运动与性别有关,并说明你的理由;
(3)若用随机数表法从650人中抽取员工,先将650人按000,001,…,649编号,恰好000~199号都为男员工,450~649号都为女员工,现规定从随机数表(见附表)第2行第7列的数开始往右读,在最先挑出的5人中,任取2人,求至少取到1位男员工的概率.
附:
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |

随机数表:
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54
为了解游客对2015年“十一”小长假的旅游情况是否满意,某旅行社从年龄(单位: 岁)
在内的游客中随机抽取了
人,并且作出了各个年龄段的频率分布直方图如图所示,同时对这
人的旅游结果满意情况进行统计得到下表:

(1)求统计表中
和
的值;
(2)从年龄在
内且对旅游结果满意的游客中,采用分层抽样的方法抽取
人,再从抽取的
人中随机抽取
人做进一步调查,记
人中年龄在
内的人数为
,求
的分布列和数学期望.




(1)求统计表中


(2)从年龄在








某数学教师对所任教的两个班级各抽取20名学生进行测试,分数分布如表:
(Ⅰ)若成绩120分以上(含120分)为优秀,求从乙班参加测试的90分以上(含90分)的同学中,随机任取2名同学,恰有1人为优秀的概率;
(Ⅱ)根据以上数据完成下面的
×
列联表:
在犯错概率小于0.1的前提下,你是否有足够的把握认为学生的数学成绩是否优秀与班级有关系?
参考公式:
,其中
Z-X-X-K]
[
分数区间 | 甲班频率 | 乙班频率 |
![]() | 0.1 | 0.2 |
![]() | 0.2 | 0.2 |
![]() | 0.3 | 0.3 |
![]() | 0.2 | 0.2 |
![]() | 0.2 | 0.1 |
(Ⅰ)若成绩120分以上(含120分)为优秀,求从乙班参加测试的90分以上(含90分)的同学中,随机任取2名同学,恰有1人为优秀的概率;
(Ⅱ)根据以上数据完成下面的


| 优秀 | 不优秀 | 总计 |
甲班 | | | |
乙班 | | | |
总计 | | | |
在犯错概率小于0.1的前提下,你是否有足够的把握认为学生的数学成绩是否优秀与班级有关系?
参考公式:


![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |