2019年某地区初中升学体育考试规定:考生必须参加长跑、掷实心球、1分钟跳绳三项测试.某学校在九年级上学期开始,就为掌握全年级学生1分钟跳绳情况,抽取了100名学生进行测试,得到下面的频率分布直方图.

(Ⅰ)规定学生1分钟跳绳个数大于等于185为优秀.若在抽取的100名学生中,女生共有50人,男生1分钟跳绳个数大于等于185的有28人.根据已知条件完成下面的列联表,并根据这100名学生的测试成绩,判断能否有99%的把握认为学生1分钟跳绳成绩是否优秀与性别有关.
1分钟跳绳成绩
优秀
不优秀
合计
男生人数
28
 
 
女生人数
 
 
100
合计
 
 
100
 
(Ⅱ)根据往年经验,该校九年级学生经过训练,正式测试时每人1分钟跳绳个数都有明显进步.假设正式测试时每人1分钟跳绳个数都比九年级上学期开始时增加10个,全年级恰有2000名学生,若所有学生的1分钟跳绳个数服从正态分布,用样本数据的平均值和标准差估计,各组数据用中点值代替),估计正式测试时1分钟跳绳个数大于183的人数(结果四舍五入到整数
附: ,其中 .
 
0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
若随机变量服从正态分布,则  
当前题号:1 | 题型:解答题 | 难度:0.99
某省高考改革实施方案指出:该省高考考生总成绩将由语文、数学、外语3门统一高考成绩和学生自主选择的学业水平等级性考试科目共同构成.该省教育厅为了解正就读高中的学生家长对高考改革方案所持的赞成态度,随机从中抽取了100名城乡家长作为样本进行调查,调查结果显示样本中有25人持不赞成意见.下面是根据样本的调查结果绘制的等高条形图.

(1)根据已知条件与等高条形图完成下面的2×2列联表,并判断我们能否有95%的把握认为“赞成高考改革方案与城乡户口有关”? 

(2)利用分层抽样从持“不赞成”意见家长中抽取5名参加学校交流活动,从中选派2名家长发言,求恰好有1名城镇居民的概率.
当前题号:2 | 题型:解答题 | 难度:0.99
每年春晚都是万众瞩目的时刻,这些节目体现的文化内涵、历史背景等反映了社会的进步.国家的富强,人民生活水平的提高等.某学校高三年级主任开学初为了解学生在看春晚后对节目体现的文化内涵、历史背景等是否会在今年的高考题中体现进行过思考,特地随机抽取100名高三学生(其中文科学生50,理科学生50名),进行了调查.统计数据如表所示(不完整):
 
“思考过”
“没有思考过”
总计
文科学生
40
10
 
理科学生
30
 
 
总计
 
 
100
 
(1)补充完整所给表格,并根据表格数据计算是否有的把握认为看春晚后会思考节目体现的文化内涵、历史背景等与文理科学生有关;
(2)①现从上表的”思考过”的文理科学生中按分层抽样选出7人.再从这7人中随机抽取4人,记这4人中“文科学生”的人数为,试求的分布列与数学期望;
②现设计一份试卷(题目知识点来自春晚相关知识整合与变化),假设“思考过”的学生及格率为,“没有思考过”的学生的及格率为.现从“思考过”与“没有思考过”的学生中分别随机抽取一名学生进行测试,求两人至少有一个及格的概率.
附参考公式:,其中.
参考数据:

0.050
0.010
0.001

3.841
6.635
10.828
 
当前题号:3 | 题型:解答题 | 难度:0.99
《最强大脑》是大型科学竞技类真人秀节目,是专注传播脑科学知识和脑力竞技的节目.某机构为了了解大学生喜欢《最强大脑》是否与性别有关,对某校的100名大学生进行了问卷调查,得到如下列联表:
 
喜欢《最强大脑》
不喜欢《最强大脑》
合计
男生
 
15
 
女生
15
 
 
合计
 
 
 
 
已知在这100人中随机抽取1人抽到不喜欢《最强大脑》的大学生的概率为0.4
(I)请将上述列联表补充完整;判断是否有99.9%的把握认为喜欢《最强大脑》与性别有关,并说明理由;
(II)已知在被调查的大学生中有5名是大一学生,其中3名喜欢《最强大脑》,现从这5名大一学生中随机抽取2人,抽到喜欢《最强大脑》的人数为X,求X的分布列及数学期望.
参考公式:
参考数据:.
当前题号:4 | 题型:解答题 | 难度:0.99
某校学生会为研究该校学生的性别与语文、数学、英语成绩这3个变量之间的关系,随机抽查了100名学生,得到某次期末考试的成绩数据如表1至表3,根据表中数据可知该校学生语文、数学、英语这三门学科中(   )
表1
 
表2
 
表3
语文
性别
不及格
及格
总计
数学
性别
不及格
及格
总计
 
英语
性别
不及格
及格
总计

14
36
50

10
40
50

25
25
50

16
34
50

20
30
50

5
45
50
总计
30
70
100
总计
30
70
100
总计
30
70
100
 
A.语文成绩与性别有关联性的可能性最大,数学成绩与性别有关联性的可能性最小
B.数学成绩与性别有关联性的可能性最大,语文成绩与性别有关联性的可能性最小
C.英语成绩与性别有关联性的可能性最大,语文成绩与性别有关联性的可能性最小
D.英语成绩与性别有关联性的可能性最大,数学成绩与性别有关联性的可能性最小
当前题号:5 | 题型:单选题 | 难度:0.99
某社会机构为了调查对手机游戏的兴趣与年龄的关系,通过问卷调查,整理数据得如下列联表:

(1)根据列联表,能否有99.9%的把握认为对手机游戏的兴趣程度与年龄有关?
(2)若已经从40岁以下的被调查者中用分层抽样的方式抽取了5名,现从这5名被调查者中随机选取3名,求这3名被调查者中恰有1名对手机游戏无兴趣的概率.
附: 
参考数据:
当前题号:6 | 题型:解答题 | 难度:0.99
某社会机构为了调查对手机游戏的兴趣与年龄的关系,通过问卷调查,整理数据得如下列联表:

(1)根据列联表,能否有的把握认为对手机游戏的兴趣程度与年龄有关?
(2)若已经从40岁以上的被调查者中用分层抽样的方式抽取了10名,现从这10名被调查者中随机选取3名,记这3名被选出的被调查者中对手机游戏很有兴趣的人数为,求的分布列及数学期望.
附:
参考数据:
当前题号:7 | 题型:解答题 | 难度:0.99
为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对30名六年级学生进行了问卷调查得到如下列联表:平均每天喝500以上为常喝,体重超过50为肥胖.
 
常喝
不常喝
合计
肥胖
 
2
 
不肥胖
 
18
 
合计
 
 
30
 
已知在全部30人中随机抽取1人,抽到肥胖的学生的概率为
(1)请将上面的列联表补充完整;
(2)是否有的把握认为肥胖与常喝碳酸饮料有关?说明你的理由;
(3)已知常喝碳酸饮料且肥胖的学生中有2名女生,现从常喝碳酸饮料且肥胖的学生抽取2人参加电视节目,则正好抽到一男一女的概率是多少?
参考数据:

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
(参考公式:,其中
当前题号:8 | 题型:解答题 | 难度:0.99
微信作为一款社交软件已经在支付、理财、交通、运动等各方面给人们的生活带来各种各样的便利.手机微信中的“微信运动”,不仅可以看自己每天的运动步数,还可以看到朋友圈里好友的步数.先生朋友圈里有大量好友使用了“微信运动”这项功能,他随机选取了其中40名,记录了他们某一天的走路步数,统计数据如下表所示:
步数
性别







3
4
5
4
3
1

3
5
3
2
5
2
 
(1)以样本估计总体,视样本频率为概率,在先生的微信朋友圈里的男性好友中任意选取3名,其中走路步数不低于6000步的有名,求的分布列和数学期望;
(2)如果某人一天的走路步数不低于8000步,此人将被“微信运动”评定为“运动达人”,否则为“运动懒人”.根据题意完成下面的2×2列联表,并据此判断能否有90%以上的把握认为“评定类型”与“性别”有关?
 
运动达人
运动懒人
总计

 
 
 

 
 
 
总计
 
 
 
 
附:,其中

0.10
0.05
0.025
0.01
0.005

2.706
3.841
5.024
6.635
7.879
 
当前题号:9 | 题型:解答题 | 难度:0.99
在贯彻中共中央、国务院关于精准扶贫政策的过程中,某单位在某市定点帮扶甲、乙两村各户贫困户.为了做到精准帮扶,工作组对这户村民的年收入情况、劳动能力情况.子女受教育情况、危旧房情况、患病情况等进行调查.并把调查结果转化为各户的贫困指标.将指标按照分成五组,得到如图所示的频率分布直方图.规定若,则认定该户为“绝对贫困户”,否则认定该户为“相对贫困户”,且当时,认定该户为“低收入户”;当时,认定该户为“亟待帮助户".已知此次调查中甲村的“绝对贫困户”占甲村贫困户的.

(1)完成下面的列联表,并判断是否有的把握认为绝对贫困户数与村落有关:
 
甲村
乙村
总计
绝对贫困户
 
 
 
相对贫困户
 
 
 
总计
 
 
 
 
(2)某干部决定在这两村贫困指标处于的贫困户中,随机选取户进行帮扶,用表示所选户中“亟待帮助户”的户数,求的分布列和数学期望.
附:,其中.










 
当前题号:10 | 题型:解答题 | 难度:0.99