已知线性相关的两个变量之间的几组数据如下表:
变量
2.7
2.9
3
3.2
4.2
变量
46
49

53
55
 
且回归方程为,经预测时,的值为,则(    )
A.B.C.D.
当前题号:1 | 题型:单选题 | 难度:0.99
2015年10月十八届五中全会决定2016年1月1日起全国统一实施全面两孩政策,为了了解适龄民众对放开生育二胎政策的态度,某市进行了一次民意调查,参与调查的100位市民中,年龄分布情况如下图所示,并得到适龄民众对放开生育二胎政策的态度数据如下表:
 
生二胎
不生二胎
合计
25~35岁
 
10
 
35~50岁
30
 
 
合计
 
 
100
 
(1)填写上面的列联表;
(2)根据调查数据,有多少的把握认为“生二胎与年龄有关”,说明理由;
(3)调查对象中决定生二胎的民众有六人分别来自三个不同的家庭且为父子,各自家庭都有一个约定:父亲先生二胎,然后儿子生二胎,则这三个家庭“二胎出生的日期的先后顺序”有多少种?
参考数据:

0.15
0.10
0.05
0.010

2.072
2.706
3.841
6.635
 
(参考公式:,其中
当前题号:2 | 题型:解答题 | 难度:0.99
已知的取值如下表所示:

如果呈线性相关,且线性回归方程为:,则(  )
A.B.C.D.
当前题号:3 | 题型:单选题 | 难度:0.99
2016年1月1日起全国统一实施全面的两孩政策.为了解适龄民众对放开生育二胎政策的态度,某市选取70后80后作为调查对象,随机调查了100人并对调查结果进行统计,70后不打算生二胎的占全部调查人数的,80后打算生二胎的占全部被调查人数的,100人中共有75人打算生二胎.
(1)根据调查数据,判断是否有以上把握认为“生二胎与年龄有关”,并说明理由;
(2)以这100人的样本数据估计该市的总体数据,且以频率估计概率,若从该市70后公民中(人数很多)随机抽取3位,记其中打算生二胎的人数为,求随机变量的分布列,数学期望和方差.
参考公式:

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
,其中
当前题号:4 | 题型:解答题 | 难度:0.99
某中学拟在高一下学期开设游泳选修课,为了了解高一学生喜欢游泳是否与性别有关,现从高一学生中抽取100人做调查,得到如下列联表:
 
喜欢游泳
不喜欢游泳
合计
男生
 
10
 
女生
20
 
 
合计
 
 
 
 
已知在这100人中随机抽取一人抽到喜欢游泳的学生的概率为
(Ⅰ)请将上述列联表补充完整,并判断是否有的把握认为喜欢游泳与性别有关?并说明你的理由;
(Ⅱ)针对问卷调查的100名学生,学校决定从喜欢游泳的人中按分层抽样的方法随机抽取6人成立游泳科普知识宣传组,并在这6人中任选两人作为宣传组的组长,求这两人中至少有一名女生的概率.
参考公式:,其中
参考数据:

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
当前题号:5 | 题型:解答题 | 难度:0.99
衡州市临枣中学高二某小组随机调查芙蓉社区160个人,以研究这一社区居民在20:00-22:00时间段的休闲方式与性别的关系,得到下面的数据表:
休闲方式
性别
看电视
看书
合计

20
100
120

20
20
40
合计
40
120
160
 
下面临界值表:
 
0.15
0.10
0.05
0.025
0.010
0.005
0.001
 
2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
 
(Ⅰ)将此样本的频率估计为总体的概率,随机调查3名在该社区的男性,设调查的3人在这一时间段以看书为休闲方式的人数为随机变量,求 的分别列和期望;
(Ⅱ)根据以上数据,能否有99%的把握认为“在20:00-22:00时间段的休闲方式与性别有关系”?
当前题号:6 | 题型:解答题 | 难度:0.99
为了增强中小学生运动健身意识,某校举办中小学生体育运动知识竞赛,学校根据男女生比例从男生中随机抽取120人,女生中随机抽取100人,进行成绩统计分析,其中成绩在80分以上为优秀,根据样本统计数据分别制作了男生成绩频数分布表以及女生成绩频率分布直方图如图:
男生成绩:
分数段





频数
9
10
21
57
23
 
女生成绩:

(Ⅰ)根据上述数据完成下列列联表:
 
优秀
非优秀
合计
男生


 
女生


 
合计
 
 
 
 
根据此数据你认为能否有以上的把握认为体育运动知识竞赛成绩是否优秀与性别有关?
参考公式:,(),

0.05
0.025
0.010
0.005
0.001

3.841
5.024
6.635
7.879
10.828
 
(Ⅱ)以样本中的频率作为概率,学校在全校成绩优秀的学生中随机抽取3人参加全市中小学体育运动知识竞赛.
(i)在其中2人为男生的条件下,求另1人为女生的概率;
(ii)设3人中女生人数为随机变量,求的分布列与数学期望.
当前题号:7 | 题型:解答题 | 难度:0.99
某综艺节目为增强娱乐性,要求现场嘉宾与其场外好友连线互动.凡是拒绝表演节目的好友均无连线好友的机会;凡是选择表演节目的好友均需连线未参加过此活动的个好友参与此活动,以此下去.
(Ⅰ)假设每个人选择表演与否是等可能的,且互不影响,则某人选择表演后,其连线的个好友中不少于个好友选择表演节目的概率是多少?
(Ⅱ)为调查“选择表演者”与其性别是否有关,采取随机抽样得到如下列表:
 
选择表演
拒绝表演
合计

50
10
60

10
10
20
合计
60
20
80
 
①根据表中数据,是否有的把握认为“表演节目”与好友的性别有关?
②将此样本的频率视为总体的概率,随机调查名男性好友,设个人中选择表演的人数,求的分布列和期望.
附:

0.15
0.10
0.05
0.025
0.010

2.072
2.706
3.841
5.024
6.635
 
当前题号:8 | 题型:解答题 | 难度:0.99
某校在高一年级学生中,对自然科学类、社会科学类校本选修课程的选课意向进行调查.现从高一年级学生中随机抽取名学生,其中男生名;在这名学生中选择社会科学类的男生、女生均为名.
(1)试问:从高一年级学生中随机抽取人,抽到男生的概率约为多少?
(2)根据抽取的名学生的调查结果,完成下列列联表.并判断能否在犯错误的概率不超过的前提下认为科类的选择与性别有关?
 
选择自然科学类
选择社会科学类
合计
男生
 
 
 
女生
 
 
 
合计
 
 
 
 
附:,其中.






















 
当前题号:9 | 题型:解答题 | 难度:0.99
为了研究家用轿车在高速公路上的车速情况,交通部门随机对50名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在30名男性驾驶员中,平均车速超过的有20人,不超过的有10人.在20名女性驾驶员中,平均车速超过的有5人,不超过的有15人.
(Ⅰ)完成下面的列联表,并判断是否有的把握认为平均车速超过的人与性别有关;
 
平均车数超过
人数
平均车速不超过
人数
合计
男性驾驶员人数
 
 
 
女性驾驶员人数
 
 
 
合计
 
 
 
 
(Ⅱ)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随即抽取3辆,记这3辆车中驾驶员为女性且车速不超过的车辆数为,若每次抽取的结果是相互独立的,求的分布列和数学期望
参考公式:,其中.
参考数据:

0.150
0.100
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
当前题号:10 | 题型:解答题 | 难度:0.99