- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- + 统计案例
- 回归分析
- 独立性检验
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某校为调查学生喜欢“应用统计”课程是否与性别有关,随机抽取了选修课程的55名学生,得到数据如下表:
(1)判断是否有99.5%的把握认为喜欢“应用统计”课程与性别有关?
(2)用分层抽样的方法从喜欢统计课程的学生中抽取6名学生作进一步调查,将这6名学生作为一个样本,从中任选2人,求恰有1个男生和1个女生的概率.
临界值参考:
(参考公式:
,其中
)
| 喜欢统计课程 | 不喜欢统计课程 | |
男生 | 20 | 5 | |
女生 | 10 | 20 |
(1)判断是否有99.5%的把握认为喜欢“应用统计”课程与性别有关?
(2)用分层抽样的方法从喜欢统计课程的学生中抽取6名学生作进一步调查,将这6名学生作为一个样本,从中任选2人,求恰有1个男生和1个女生的概率.
临界值参考:
![]() | 0.10 | 0.05 | 0.25 | 0.010 | 0.005 | 0.001 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:


为了调查胃病是否与生活规律有关,某同学在当地随机调查了500名30岁以上的人,并根据调查结果计算出了随机变量
的观测值
,则认为30岁以上的人患胃病与生活无规律有关时,出错的概率不会超过( )
附表:



附表:

A.0.001 | B.0.005 | C.0.010 | D.0.025 |
2022年北京冬奥会的申办成功与“3亿人上冰雪”口号的提出,将冰雪这个冷项目迅速炒“热”.北京某综合大学计划在一年级开设冰球课程,为了解学生对冰球运动的兴趣,随机从该校一年级学生中抽取了100人进行调查,其中女生中对冰球运动有兴趣的占
,而男生有10人表示对冰球运动没有兴趣额.
(1)完成
列联表,并回答能否有
的把握认为“对冰球是否有兴趣与性别有关”?
(2)已知在被调查的女生中有5名数学系的学生,其中3名对冰球有兴趣,现在从这5名学生中随机抽取3人,求至少有2人对冰球有兴趣的概率.
附表:


(1)完成


| 有兴趣 | 没兴趣 | 合计 |
男 | | | 55 |
女 | | | |
合计 | | | |
(2)已知在被调查的女生中有5名数学系的学生,其中3名对冰球有兴趣,现在从这5名学生中随机抽取3人,求至少有2人对冰球有兴趣的概率.
附表:
![]() | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |

随着中国教育改革的不断深入,越来越多的教育问题不断涌现.“衡水中学模式”入驻浙江,可以说是应试教育与素质教育的强烈碰撞.这一事件引起了广大市民的密切关注.为了了解广大市民关注教育问题与性别是否有关,记者在北京,上海,深圳随机调查了100位市民,其中男性55位,女性45位.男性中有45位关注教育问题,其余的不关注教育问题;女性中有30位关注教育问题,其余的不关注教育问题.
(1)根据以上数据完成下列2×2列联表;
(2)能否在犯错误的概率不超过0.025的前提下认为是否关注教育与性别有关系?
参考公式:
,其中
.
(1)根据以上数据完成下列2×2列联表;
| 关注教育问题 | 不关注教育问题 | 合计 | |||||
女 | 30 | | 45 | |||||
男 | 45 | | 55 | |||||
合计 | ![]() | | 100 | |||||
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |||
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | |||
|
(2)能否在犯错误的概率不超过0.025的前提下认为是否关注教育与性别有关系?
参考公式:


某土特产超市为预估2020年元旦期间游客购买土特产的情况,对2019年元旦期间的90位游客购买情况进行统计,得到如下人数分布表.
(1)根据以上数据完成
列联表,并判断是否有
的把握认为购买金额是否少于60元与性别有关.
(2)为吸引游客,该超市推出一种优惠方案,购买金额不少于60元可抽奖3次,每次中奖概率为
(每次抽奖互不影响,且
的值等于人数分布表中购买金额不少于60元的频率),中奖1次减5元,中奖2次减10元,中奖3次减15元.若游客甲计划购买80元的土特产,请列出实际付款数
(元)的分布列并求其数学期望.
附:参考公式和数据:
,
.
附表:
购买金额(元) | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
人数 | 10 | 15 | 20 | 15 | 20 | 10 |
(1)根据以上数据完成


| 不少于60元 | 少于60元 | 合计 |
男 | | 40 | |
女 | 18 | | |
合计 | | | |
(2)为吸引游客,该超市推出一种优惠方案,购买金额不少于60元可抽奖3次,每次中奖概率为



附:参考公式和数据:


附表:
![]() | 2.072 | 2.706 | 3.841 | 6.635 | 7.879 |
![]() | 0.150 | 0.100 | 0.050 | 0.010 | 0.005 |
2019年10月18日-27日,第七届世界军人运动会在湖北武汉举办,中国代表团共获得133金64银42铜,共239枚奖牌.为了调查各国参赛人员对主办方的满意程度,研究人员随机抽取了500名参赛运动员进行调查,所得数据如下所示,现有如下说法:①在参与调查的500名运动员中任取1人,抽到对主办方表示满意的男性运动员的概率为
;②在犯错误的概率不超过1%的前提下可以认为“是否对主办方表示满意与运动员的性别有关”;③没有99.9%的把握认为“是否对主办方表示满意与运动员的性别有关”;则正确命题的个数为( )附:


| 男性运动员 | 女性运动员 | |||
对主办方表示满意 | 200 | 220 | |||
对主办方表示不满意 | 50 | 30 | |||
![]() | 0.100 | 0.050 | 0.010 | 0.001 | |
k | 2.706 | 3.841 | 6.635 | 10.828 | |
A.0 | B.1 | C.2 | D.3 |
手机给人们的生活带来便捷,但同时也对中学生的生活和学习造成了严重的影响,某校高一几个学生成立研究性学习小组,就使用手机对学习成绩的影响随机抽取了该校100名学生的期末考试成绩并制成如下的表,则下列说法正确的是( )
(附:
列联表
公式:
,其中
)
| 成绩优秀 | 成绩不优秀 | 合计 |
不用手机 | 40 | 10 | 50 |
使用手机 | 5 | 45 | 50 |
合计 | 45 | 55 | 100 |
(附:




![]() | 0.010 | 0.005 | 0.001 |
![]() | 6.635 | 7.879 | 10.828 |
A.在犯错误的概率不超过0.001的前提下认为使用手机与学习成绩有关. |
B.在犯错误的概率不超过0.001的前提下认为使用手机与学习成绩无关. |
C.有![]() |
D.无![]() |
在对人们休闲方式的一次调查中,根据数据建立如下的
列联表:
根据表中数据,得到
,所以我们至少有( )的把握判定休闲方式与性别有关系.(参考数据:
,
)

| 看书 | 运动 | 合计 |
男 | 8 | 20 | 28 |
女 | 16 | 12 | 28 |
合计 | 24 | 32 | 56 |
根据表中数据,得到



A.99% | B.95% | C.1% | D.5% |
为了调查生活规律与患胃病是否与有关,某同学在当地随机调查了200名30岁以上的人,并根据调查结果制成了不完整的列联表如下:
(1)补全列联表中的数据;
(2)用独性检验的基本原理,说明生活无规律与患胃病有关时,出错的概率不会超过多少?
参考公式和数表如下:

| 不患胃病 | 患胃病 | 总计 |
生活有规律 | 60 | 40 | |
生活无规律 | | 60 | 100 |
总计 | 100 | | |
(1)补全列联表中的数据;
(2)用独性检验的基本原理,说明生活无规律与患胃病有关时,出错的概率不会超过多少?
参考公式和数表如下:

![]() | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
在两个变量
与
的回归模型中,分别选择了四个不同的模型,且它们的
的值的大小关系为:则
拟合效果最好的是( )




A.模型1 | B.模型2 | C.模型3 | D.模型4 |