由中央电视台综合频道和唯众传媒联合制作的开讲啦是中国首档青年电视公开课,每期节目由一位知名人士讲述自己的故事,分享他们对于生活和生命的感悟,给予中国青年现实的讨论和心灵的滋养,讨论青年们的人生问题,同时也在讨论青春中国的社会问题,受到青年观众的喜爱,为了了解观众对节目的喜爱程度,电视台随机调查了AB两个地区的100名观众,得到如表的列联表,已知在被调查的100名观众中随机抽取1名,该观众是B地区当中“非常满意”的观众的概率为
 
非常满意
满意
合计
A
30
15
 
B
 
 
 
合计
 
 
 
 
完成上述表格并根据表格判断是否有的把握认为观众的满意程度与所在地区有关系;
若以抽样调查的频率为概率,从A地区随机抽取3人,设抽到的观众“非常满意”的人数为X,求X的分布列和期望.








 
附:参考公式:
当前题号:1 | 题型:解答题 | 难度:0.99
通过随机询问某地100名高中学生在选择座位时是否挑同桌,得到如下列联表:
 
男生
女生
合计
挑同桌
30
40
70
不挑同桌
20
10
30
总计
50
50
100
 
从这50名男生中按是否挑同桌采取分层抽样的方法抽取一个容量为5的样本,现从这5人中随机选取3人做深度采访,求这3名学生中至少有2名要挑同桌的概率;
根据以上列联表,是否有以上的把握认为“性别与在选择座位时是否挑同桌”有关?
下面的临界值表供参考:














 
参考公式:,其中
当前题号:2 | 题型:解答题 | 难度:0.99
北京联合张家口获得2022年第24届冬奥会举办权,我国各地掀起了发展冰雪运动的热潮,现对某高中的学生对于冰雪运动是否感兴趣进行调查,该高中男生人数是女生的1.2倍,按照分层抽样的方法,从中抽取110人,调查高中生“是否对冰雪运动感兴趣”得到如下列联表:
 
感兴趣
不感兴趣
合计
男生
40
 
 
女生
 
30
 
合计
 
 
110
 
(1)补充完成上述列联表;
(2)是否有99%的把握认为是否喜爱冰雪运动与性别有关.
附: (其中).

0.15
0.10
0.05
0.025
0.010
0.005

2.072
2.706
3.841
5.024
6.635
7.879
 
当前题号:3 | 题型:解答题 | 难度:0.99
近年来,国资委.党委高度重视扶贫开发工作,坚决贯彻落实中央扶贫工作重大决策部署,在各个贫困县全力推进定点扶贫各项工作,取得了积极成效,某贫困县为了响应国家精准扶贫的号召,特地承包了一块土地,已知土地的使用面积以及相应的管理时间的关系如下表所示:
土地使用面积(单位:亩)
1
2
3
4
5
管理时间(单位:月)
8
10
13
25
24
 
并调查了某村300名村民参与管理的意愿,得到的部分数据如下表所示:
 
愿意参与管理
不愿意参与管理
男性村民
150
50
女性村民
50
 
 
(1)求出相关系数的大小,并判断管理时间与土地使用面积是否线性相关?
(2)是否有99.9%的把握认为村民的性别与参与管理的意愿具有相关性?
(3)若以该村的村民的性别与参与管理意愿的情况估计贫困县的情况,则从该贫困县中任取3人,记取到不愿意参与管理的男性村民的人数为,求的分布列及数学期望.
参考公式:

其中.临界值表:

0.100
0.050
0.025
0.010
0.001

2.706
3.841
5.024
6.635
10.828
 
参考数据:
当前题号:4 | 题型:解答题 | 难度:0.99
电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:

 
非体育迷
体育迷
合计

 
 
 

 
10
55
合计
 
 
 
 
将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.
(1)根据已知条件完成上面的2×2列联表,若按95%的可靠性要求,并据此资料,你是否认为“体育迷”与性别有关?
(2)现在从该地区非体育迷的电视观众中,采用分层抽样方法选取5名观众,求从这5名观众选取两人进行访谈,被抽取的2名观众中至少有一名女生的概率.
附:
PK2k
0.05
0.01
k
3.841
6.635
 
当前题号:5 | 题型:解答题 | 难度:0.99
第二届中国国际进口博览会于2019年11月5日至10日在上海国家会展中心举行.它是中国政府坚定支持贸易自由化和经济全球化,主动向世界开放市场的重要举措,有利于促进世界各国加强经贸交流合作,促进全球贸易和世界经济增长,推动开放世界经济发展.某机构为了解人们对“进博会”的关注度是否与性别有关,随机抽取了100名不同性别的人员(男、女各50名)进行问卷调查,并得到如下列联表:
 
男性
女性
合计
关注度极高
35
14
49
关注度一般
15
36
51
合计
50
50
100
 
(1)根据列联表,能否有99.9%的把握认为对“进博会”的关注度与性别有关;
(2)若从关注度极高的被调查者中按男女分层抽样的方法抽取7人了解他们从事的职业情况,再从7人中任意选取2人谈谈关注“进博会”的原因,求这2人中至少有一名女性的概率.
附:.
参考数据:

0.050
0.010
0.001

3.841
6.635
10.828
 
当前题号:6 | 题型:解答题 | 难度:0.99
近来天气变化无常,陡然升温、降温幅度大于的天气现象出现增多.陡然降温幅度大于容易引起幼儿伤风感冒疾病.为了解伤风感冒疾病是否与性别有关,在某妇幼保健院随机对人院的名幼儿进行调查,得到了如下的列联表,若在全部名幼儿中随机抽取人,抽到患伤风感冒疾病的幼儿的概率为,
(1)请将下面的列联表补充完整;
 
患伤风感冒疾病
不患伤风感冒疾病
合计

 
25
 

20
 
 
合计
 
 
100
 
(2)能否在犯错误的概率不超过的情况下认为患伤风感冒疾病与性别有关?说明你的理由;
(3)已知在患伤风感冒疾病的名女性幼儿中,名又患黄痘病.现在从患伤风感冒疾病的名女性中,选出名进行其他方面的排查,记选出患黄痘病的女性人数为,的分布列以及数学期望.下面的临界值表供参考:
















 
参考公式:,其中
当前题号:7 | 题型:解答题 | 难度:0.99
微信是腾讯公司推出的一种手机通讯软件,它支持发送语音短信、视频、图片和文字,一经推出便风靡全国,甚至涌现出一批在微信的朋友圈内销售商品的人(被称为微商).为了调查每天微信用户使用微信的时间,某经销化妆品的微商在一广场随机采访男性、女性用户各名,将男性、女性使用微信的时间分成组:,,,,分别加以统计,得到如图所示的频率分布直方图.

(1)根据女性频率分布直方图,估计女性使用微信的平均时间;
(2)若每天玩微信超过小时的用户列为“微信控”,否则称其为“非微信控”,请你根据已知条件完成的列联表,并判断是否有的把握认为“微信控”与“性别”有关?
参考公式:,其中
参考数据:
当前题号:8 | 题型:解答题 | 难度:0.99
某市在争创文明城市过程中,为调查市民对文明出行机动车礼让行人的态度,选了某小区的100位居民调查结果统计如下:
 
支持
不支持
合计
年龄不大于45岁
 
 
80
年龄大于45岁
10
 
 
合计
 
70
100
 
(1)根据已有数据,把表格数据填写完整;
(2)能否在犯错误的概率不超过5%的前提下认为不同年龄段与是否支持文明出行机动车礼让行人有关?
(3)已知在被调查的年龄小于25岁的支持者有5人,其中2人是教师,现从这5人中随机抽取3人,求至多抽到1位教师的概率.
当前题号:9 | 题型:解答题 | 难度:0.99
某企业新研发了一种产品,产品的成本由原料成本及非原料成本组成.每件产品的非原料成本(元)与生产该产品的数量(千件)有关,经统计得到如下数据:

根据以上数据,绘制了散点图.

观察散点图,两个变量不具有线性相关关系,现考虑用反比例函数模型和指数函数模型分别对两个变量的关系进行拟合.已求得用指数函数模型拟合的回归方程为的相关系数.参考数据(其中):

(1)用反比例函数模型求关于的回归方程;
(2)用相关系数判断上述两个模型哪一个拟合效果更好(精确到0.01),并用其估计产量为10千件时每件产品的非原料成本;
(3)该企业采取订单生产模式(根据订单数量进行生产,即产品全部售出).根据市场调研数据,若该产品单价定为100元,则签订9千件订单的概率为0.8,签订10千件订单的概率为0.2;若单价定为90元,则签订10千件订单的概率为0.3,签订11千件订单的概率为0.7.已知每件产品的原料成本为10元,根据(2)的结果,企业要想获得更高利润,产品单价应选择100元还是90元,请说明理由.
参考公式:对于一组数据,…,,其回归直线的斜率和截距的最小二乘估计分别为:,相关系数.
当前题号:10 | 题型:解答题 | 难度:0.99