刷题首页
题库
高中数学
题干
某市环保部门对该市市民进行了一次动物保护知识的网络问卷调查,每位市民仅有一次参加机会,通过随机抽样,得到参'与问卷调查的100人的得分(满分:100分)数据,统计结果如表所示:
组别
男
2
3
5
15
18
12
女
0
5
10
15
5
10
若规定问卷得分不低于70分的市民称为“动物保护关注者”,则山图中表格可得
列联表如下:
非“动物保护关注者”
是“动物保护关注者”
合计
男
10
45
55
女
15
30
45
合计
25
75
100
(1)请判断能否在犯错误的概率不超过0.05的前提下认为“动物保护关注者”与性别有关?
(2)若问卷得分不低于80分的人称为“动物保护达人”.现在从本次调查的“动物保护达人”中利用分层抽样的方法随机抽取6名市民参与环保知识问答,再从这6名市民中抽取2人参与座谈会,求抽取的2名市民中,既有男“动物保护达人”又有女“动物保护达人”的概率.
附表及公式:
,其中
.
0.15
0.10
0.05
0.025
0.010
0.005
0.001
2.072
2.706
3.841
5.024
6.635
7.879
10.828
上一题
下一题
0.99难度 解答题 更新时间:2019-11-06 11:47:00
答案(点此获取答案解析)
同类题1
为了调查民众对国家实行“新农村建设”政策的态度,现通过网络问卷随机调查了年龄在20周岁至80周岁的100人,他们年龄频数分布和支持“新农村建设”人数如下表:
年龄
频数
10
20
30
20
10
10
支持“新农村建设”
3
11
26
12
6
2
(1)根据上述统计数据填下面的
列联表,并判断是否有
的把握认为以50岁为分界点对“新农村建设”政策的支持度有差异;
年龄低于50岁的人数
年龄不低于50岁的人数
合计
支持
不支持
合计
(2)为了进一步推动“新农村建设”政策的实施,中央电视台某节目对此进行了专题报道,并在节目最后利用随机拨号的形式在全国范围内选出4名幸运观众(假设年龄均在20周岁至80周岁内),给予适当的奖励.若以频率估计概率,记选出4名幸运观众中支持“新农村建设”人数为
,试求随机变量
的分布列和数学期望.
参考数据:
0.150
0.100
0.050
0.025
0.010
0.005
0.001
2.072
2.706
3.841
5.024
6.635
7.879
10.828
参考公式:
,其中
.
同类题2
2016年春节,“抢红包”成为社会热议的话题之一.某机构对春节期间用户利用手机“抢红包”的情况进行调查,如果一天内抢红包的总次数超过10次为“关注点高”,否则为“关注点低”,调查情况如下表所示:
(1)填写上表中
x,y
的值并判断是否有95%以上的把握认为性别与关注点高低有关?
(2)现要从上述男性用户中随机选出3名参加一项活动,以
X
表示选中的同学中抢红包总次数超过10次的人数,求随机变量
X
的分布列及数学期望E(
X
).
下面的临界值表供参考:
独立性检验统计量
,其中
n
=
a
+
b
+
c
+
d.
同类题3
某学校为了制定治理学校门口上学、放学期间家长接送孩子乱停车现象的措施,对全校学生家长进行了问卷调查.根据从中随机抽取的50份调查问卷,得到了如下的列联表:
同意限定区域停车
不同意限定区域停车
合计
男
20
5
25
女
10
15
25
合计
30
20
50
则认为“是否同意限定区域停产与家长的性别有关”的把握约为
__________
.
附:
,其中
.
0.050
0.005
0.001
3.841
7.879
10.828
同类题4
2022年北京冬奥会的申办成功与“3亿人上冰雪”口号的提出,将冰雪这个冷项目迅速炒“热”.北京某综合大学计划在一年级开设冰球课程,为了解学生对冰球运动的兴趣,随机从该校一年级学生中抽取了100人进行调查,其中女生中对冰球运动有兴趣的占
,而男生有10人表示对冰球运动没有兴趣额.
(1)完成
列联表,并回答能否有
的把握认为“对冰球是否有兴趣与性别有关”?
有兴趣
没兴趣
合计
男
55
女
合计
(2)已知在被调查的女生中有5名数学系的学生,其中3名对冰球有兴趣,现在从这5名学生中随机抽取3人,求至少有2人对冰球有兴趣的概率.
附表:
0.150
0.100
0.050
0.025
0.010
2.072
2.706
3.841
5.024
6.635
同类题5
4月23日是“世界读书日”,某中学在此期间开展了一系列的读书教育活动,为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查,下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,若将日均课外阅读时间不低于60分钟的学生称为“读书谜”,低于60分钟的学生称为“非读书谜”
(1)求
的值并估计全校3000名学生中读书谜大概有多少?(将频率视为概率)
(2)根据已知条件完成下面2×2的列联表,并据此判断是否有99%的把握认为“读书谜”与性别有关?
非读书迷
读书迷
合计
男
15
女
45
合计
附:
.
0.100
0.050
0.025
0.010
0.001
2.706
3.841
5.024
6.635
10.828
相关知识点
计数原理与概率统计
统计案例
独立性检验