- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 求回归直线方程
- 最小二乘法的概念及辨析
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某农场给某种农作物的施肥量x(单位:吨)与其产量y(单位:吨)的统计数据如表:

由于表中的数据,得到回归直线方程为
,当施肥量
时,该农作物的预报产量是( )

由于表中的数据,得到回归直线方程为



A.72.0 | B.67.7 | C.65.5 | D.63.6 |
某公司的广告费支出x与销售额y(单位:万元)之间有下列对应数据

回归方程为
=
x+
,其中
,
(1)画出散点图,并判断广告费与销售额是否具有相关关系;
(2)根据表中提供的数据,求出y与x的回归方程
=
x+
;
(3)预测销售额为115万元时,大约需要多少万元广告费.

回归方程为




(1)画出散点图,并判断广告费与销售额是否具有相关关系;
(2)根据表中提供的数据,求出y与x的回归方程



(3)预测销售额为115万元时,大约需要多少万元广告费.
某羽绒服卖场为了解气温对营业额的影响,随机记录了该店3月份上旬中某5天的日营业额y(单元:千元)与该地当日最低气温x(单位:∘C)的数据,如表:
(1)求y关于x的回归直线方程
;
(2)设该地3月份的日最低气温
,其中μ近似为样本平均数,
近似为样本方差,求
参考公式:
,
计算参考值:
.
.
x | 2 | 5 | 8 | 9 | 11 |
y | 12 | 10 | 8 | 8 | 7 |
(1)求y关于x的回归直线方程

(2)设该地3月份的日最低气温



参考公式:


计算参考值:


某学习小组在研究性学习中,对昼夜温差大小与绿豆种子一天内出芽数之间的关系进行研究该小组在4月份记录了1日至6日每天昼夜最高、最低温度(如图1),以及浸泡的100颗绿豆种子当天内的出芽数(如图2)

根据上述数据作出散点图,可知绿豆种子出芽数
(颗)和温差
具有线性相关关系。
(1)求绿豆种子出芽数
(颗)关于温差
的回归方程
;
(2)假如4月1日至7日的日温差的平均值为11℃,估计4月7日浸泡的10000颗绿豆种子一天内的出芽数。
附:

根据上述数据作出散点图,可知绿豆种子出芽数


(1)求绿豆种子出芽数



(2)假如4月1日至7日的日温差的平均值为11℃,估计4月7日浸泡的10000颗绿豆种子一天内的出芽数。
附:

夏天喝冷饮料已成为年轻人的时尚. 某饮品店购进某种品牌冷饮料若干瓶,再保鲜.
(Ⅰ)饮品成本由进价成本和可变成本(运输、保鲜等其它费用)组成.根据统计,“可变成本”
(元)与饮品数量
(瓶)有关系.
与
之间对应数据如下表:
依据表中的数据,用最小二乘法求出
关于
的线性回归方程
;如果该店购入20瓶该品牌冷饮料,估计“可变成本”约为多少元?
(Ⅱ)该饮品店以每瓶10元的价格购入该品牌冷饮料若干瓶,再以每瓶15元的价格卖给顾客。如果当天前8小时卖不完,则通过促销以每瓶5元的价格卖给顾客(根据经验,当天能够把剩余冷饮料都低价处理完毕,且处理完毕后,当天不再购进).该店统计了去年同期100天该饮料在每天的前8小时内的销售量(单位:瓶),制成如下表:
若以100天记录的频率作为每日前8小时销售量发生的概率,若当天购进18瓶,求当天利润的期望值.
(注:利润=销售额
购入成本
“可变本成”)
参考公式:回归直线方程为
,其中
参考数据:
,
.
(Ⅰ)饮品成本由进价成本和可变成本(运输、保鲜等其它费用)组成.根据统计,“可变成本”




饮品数量![]() | 2 | 4 | 5 | 6 | 8 |
可变成本![]() | 3 | 4 | 4 | 4 | 5 |
依据表中的数据,用最小二乘法求出



(Ⅱ)该饮品店以每瓶10元的价格购入该品牌冷饮料若干瓶,再以每瓶15元的价格卖给顾客。如果当天前8小时卖不完,则通过促销以每瓶5元的价格卖给顾客(根据经验,当天能够把剩余冷饮料都低价处理完毕,且处理完毕后,当天不再购进).该店统计了去年同期100天该饮料在每天的前8小时内的销售量(单位:瓶),制成如下表:
每日前8个小时 销售量(单位:瓶) | 15 | 16 | 17 | 18 | 19 | 20 | 21 |
频数 | 10 | 15 | 16 | 16 | 15 | 13 | 15 |
若以100天记录的频率作为每日前8小时销售量发生的概率,若当天购进18瓶,求当天利润的期望值.
(注:利润=销售额


参考公式:回归直线方程为


参考数据:


某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费
(单位:千元)对年销售量
(单位:
)和年利润
(单位:千元)的影响,对近8年的年宣传费
和年销售量
数据作了初步处理,得到下面的散点图及一些统计量的值.

表中
,
(1)根据散点图判断,
与
哪一个适宜作为年销售量
关于年宣传费
的回归方程类型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及表中数据,建立
关于
的回归方程;
(3)以知这种产品的年利率
与
、
的关系为
.根据(2)的结果求年宣传费
时,年销售量及年利润的预报值是多少?
附:对于一组数据
,
……
,其回归线
的斜率和截距的最小二乘估计分别为:
,







![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
46.6 | 563 | 6.8 | 298.8 | 1.6 | 1469 | 108.8 |
表中


(1)根据散点图判断,




(2)根据(1)的判断结果及表中数据,建立


(3)以知这种产品的年利率





附:对于一组数据






近年来,人们对食品安全越来越重视,有机蔬菜的需求也越来越大,国家也制定出台了一系列支持有机肥产业发展的优惠政策,鼓励和引导农民增施有机肥,“藏粮于地,藏粮于技”.根据某种植基地对某种有机蔬菜产量与有机肥用量的统计,每个有机蔬菜大棚产量的增加量
(百斤)与使用有机肥料
(千克)之间对应数据如下表:
(1)根据表中的数据,试建立
关于
的线性回归方程
(精确到
);
(2)若种植基地每天早上7点将采摘的某有机蔬菜以每千克10元的价格销售到某超市,超市以每千克15元的价格卖给顾客.已知该超市每天8点开始营业,22点结束营业,超市规定:如果当天16点前该有机蔬菜没卖完,则以每千克5元的促销价格卖给顾客(根据经验,当天都能全部卖完).该超市统计了100天该有机蔬菜在每天的16点前的销售量(单位:千克),如表:
若以100天记录的频率作为每天16点前销售量发生的概率,以该超市当天销售该有机蔬菜利润的期望值为决策依据,说明该超市选择购进该有机蔬菜110千克还是120千克,能使获得的利润更大?
附:回归直线方程
中的斜率和截距的最小二乘估计公式分别为:
,
.
参考数据:
,
.


使用有机肥料![]() | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
产量增加量![]() | 2.1 | 2.9 | 3.5 | 4.2 | 4.8 | 5.6 | 6.2 | 6.7 |
(1)根据表中的数据,试建立




(2)若种植基地每天早上7点将采摘的某有机蔬菜以每千克10元的价格销售到某超市,超市以每千克15元的价格卖给顾客.已知该超市每天8点开始营业,22点结束营业,超市规定:如果当天16点前该有机蔬菜没卖完,则以每千克5元的促销价格卖给顾客(根据经验,当天都能全部卖完).该超市统计了100天该有机蔬菜在每天的16点前的销售量(单位:千克),如表:
每天16点前的 销售量(单位:千克) | 100 | 110 | 120 | 130 | 140 | 150 | 160 |
频数 | 10 | 20 | 16 | 16 | 14 | 14 | 10 |
若以100天记录的频率作为每天16点前销售量发生的概率,以该超市当天销售该有机蔬菜利润的期望值为决策依据,说明该超市选择购进该有机蔬菜110千克还是120千克,能使获得的利润更大?
附:回归直线方程



参考数据:


某种仪器随着使用年限的增加,每年的维护费相应增加. 现对一批该仪器进行调查,得到这批仪器自购入使用之日起,前5年平均每台仪器每年的维护费用大致如下表:
(1)根据表中所给数据,试建立
关于
的线性回归方程
;
(2)若该仪器的价格是每台12万元,你认为应该使用满五年换一次仪器,还是应该使用满八年换一次仪器?并说明理由.
参考公式:用最小二乘法求线性回归方程
的系数公式:
,
年份![]() | 1 | 2 | 3 | 4 | 5 |
维护费![]() | 0.7 | 1.2 | 1.6 | 2.1 | 2.4 |
(1)根据表中所给数据,试建立



(2)若该仪器的价格是每台12万元,你认为应该使用满五年换一次仪器,还是应该使用满八年换一次仪器?并说明理由.
参考公式:用最小二乘法求线性回归方程



某公司对2019年1~4月份的获利情况进行了数据统计,如下表所示:
利用线性回归分析思想,预测出2019年8月份的利润为11.6万元,则
关于
的线性回归方程为________.
月份![]() | 1 | 2 | 3 | 4 |
利润![]() | 5 | 6 | 6.5 | 8 |
利用线性回归分析思想,预测出2019年8月份的利润为11.6万元,则

